Blog Archives
Background Subtraction dengan Metode Pengurangan Citra Biner
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk mendeteksi kendaraan dengan metode background subtraction pengurangan citra biner:
Langkah-langkahnya adalah sebagai berikut:
-read more->
Background Subtraction dalam ruang warna HSV
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk deteksi kendaraan dengan metode background subtraction dalam ruang warna HSV.
Langkah langkahnya adalah sebagai berikut:
-read more->
Representasi Citra Digital dan Piksel Penyusunnya
Citra adalah representasi dari fungsi intensitas cahaya dalam bidang dua dimensi. Berdasarkan sinyal pembentuknya, citra dibedakan menjadi dua jenis yaitu citra analog dan citra digital.
1. Citra Analog
Citra analog merupakan citra yang terbentuk dari sinyal kontinyu. Nilai intensitas cahaya pada citra analog memiliki range antara 0 s.d ~. Alat akuisisi citra analog antara lain mata manusia dan kamera analog.
2. Citra Digital
Citra digital merupakan citra yang terbentuk dari sinyal diskrit. Nilai intensitas cahaya pada citra digital bergantung pada kedalaman bit yang menyusunnya (materi lebih lanjut mengenai kedalaman bit suatu citra dapat dilihat pada laman berikut: Kedalaman Bit Suatu Citra Grayscale). Alat akuisisi citra digital antara lain yaitu kamera digital, smartphone, webcam, scanner, mikroskop digital, pesawat radiodiagnostik seperti CT Scan, CR, MRI, USG, dll.
Dalam bidang dua dimensi, citra dibentuk oleh sekumpulan picture element (pixel) yang memiliki dua informasi penting yaitu koordinat piksel (x,y) dan nilai intensitas piksel f(x,y) (materi lebih lanjut mengenai piksel sebagai penyusun citra digital dapat dilihat pada laman berikut: Pengolahan Citra Digital).
Berikut ini merupakan contoh aplikasi pemrograman matlab mengenai representasi citra digital dan piksel penyusunnya:
1. Citra digital 1-bit (2 derajat keabuan)
Pada citra ini nilai intensitas citra dibagi menjadi 2^1 = 2 derajat keabuan yaitu hitam (0) dan putih (1). Citra jenis ini disebut juga dengan citra biner (binary image).
Restorasi Citra Digital Menggunakan Matlab
Dalam dunia nyata, suatu proses pencitraan hampir dapat dipastikan akan menghasilkan citra keluaran yang mengalami degradasi. Penyebab degradasi ini antara lain berupa sensor yang tidak fokus, pergerakan dari obyek maupun sistem pencitraan, gangguan derau termal pada sensor dan perangkat elektronik sistem pencitraan, maupun sebab-sebab lainnya yang terkait dengan lingkungan pengambilan data seperti turbulensi atmosfir pada praktek remote sensing dan pengamatan astronomi.
Untuk memperoleh citra yang lebih tepat, diperlukan adanya suatu proses restorasi citra. Restorasi citra berkaitan dengan upaya memperoleh kembali suatu citra asal dari sebuah citra yang terdegradasi, dengan memanfaatkan suatu pengetahuan mengenai proses terjadinya degradasi tersebut.
Restorasi citra (image restoration) dapat dibedakan dengan perbaikan citra (image enhancement), di mana proses yang dilakukan dalam perbaikan citra lebih bersifat heuristik dan lebih dititikberatkan pada upaya melakukan aksentuasi fitur dalam citra.
Berikut ini merupakan contoh aplikasi pemrograman matlab mengenai restorasi citra. Coding dapat dijalankan menggunakan software matlab minimal versi r2014b.
A. Model Derau Aditif
1. Citra noise test

-read more->
Efek Sepia pada Foto Digital
Complement Image (Negative Image)
Citra negatif merupakan citra yang nilai pikselnya berkebalikan dengan citra aslinya. Untuk citra grayscale 8-bit, apabila citra asli disimbolkan dengan I, maka negatif dari citra tersebut adalah I’ = 255-I. Contoh perhitungan nilai piksel dari citra negatif ditunjukkan pada gambar di bawah ini:

Berikut ini merupakan contoh aplikasi pemrograman GUI Matlab mengenai citra komplemen/ citra negatif
1. Citra RGB (RGB Image)
Cara Menghitung Luas , Keliling , dan Centroid suatu Citra
Proses pengenalan objek dalam citra umumnya membutuhkan suatu ciri yang dapat membedakan antara objek yang satu dengan objek lainnya. Ciri yang dapat diekstrak antara lain adalah ciri ukuran (luas dan keliling) dan posisi (koordinat centroid) dari suatu objek.
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk menghitung centroid, luas, dan keliling objek dalam suatu citra grayscale. Centroid merupakan koordinat titik tengah dari suatu objek. Luas merupakan banyaknya piksel yang menyusun suatu objek. Sedangkan keliling merupakan banyaknya piksel yang berada pada boundary objek. Hasil penghitungan geometris tersebut dapat digunakan sebagai ciri masukan dalam tahapan pengenalan pola morfologi/ bentuk.
Langkah-langkah pemrograman untuk menghitung luas, keliling, dan centroid suatu citra adalah sebagai berikut:
1. Membaca dan menampilkan citra grayscale

-read more->
Geometric Image Transformations
Dalam bidang pengolahan citra digital, terkadang diperlukan suatu proses transformasi geometri untuk memudahkan dalam pengolahan selanjutnya yang lebih kompleks. Berikut ini merupakan contoh aplikasi pemrograman GUI Matlab mengenai Geometric Image Transformations berupa operasi flip dan rotasi.
Tampilan GUI Matlab untuk transformasi geometri citra adalah:
1. Citra Asli (Original Image)

Model warna RGB dan histogram citra
Model warna RGB terdiri dari tiga komponen warna yaitu komponen Red, Green, dan Blue. Perintah untuk memanggil citra RGB adalah sebagai berikut:
I = imread('football.jpg');
figure, imshow(I);




























































