Blog Archives
Segmentasi Citra dengan Metode Thresholding
Thresholding merupakan salah satu metode segmentasi citra yang memisahkan antara objek dengan background dalam suatu citra berdasarkan pada perbedaan tingkat kecerahannya atau gelap terang nya. Region citra yang cenderung gelap akan dibuat semakin gelap (hitam sempurna dengan nilai intensitas sebesar 0), sedangkan region citra yang cenderung terang akan dibuat semakin terang (putih sempurna dengan nilai intensitas sebesar 1). Oleh karena itu, keluaran dari proses segmentasi dengan metode thresholding adalah berupa citra biner dengan nilai intensitas piksel sebesar 0 atau 1. Setelah citra sudah tersegmentasi atau sudah berhasil dipisahkan objeknya dengan background, maka citra biner yang diperoleh dapat dijadikan sebagai masking utuk melakukan proses cropping sehingga diperoleh tampilan citra asli tanpa background atau dengan background yang dapat diubah-ubah.
Berikut ini merupakan contoh pemrograman matlab mengenai aplikasi dari metode thresholding untuk melakukan segmentasi terhadap citra digital. Setelah objek berhasil disegmentasi, proses selanjutnya adalah mengganti-ganti background citra rgb asli
Langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli
clc; clear; close all; % Object Img = imread('the mario bros.jpg'); figure, imshow(Img);
Ekstraksi Ciri Citra RGB
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan proses ekstraksi ciri dari citra rgb. Ciri yang diekstrak adalah berupa ciri statistik dan ciri bentuk. Pada contoh ini digunakan citra fish.jpg di mana foreground adalah berupa ikan sedangkan background adalah berupa air.
Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli
clc;clear;close all; Img = imread('fish.jpg'); figure, imshow(Img), title('original image');
sehingga diperoleh tampilan:
Jaringan Syaraf Tiruan Untuk Pengenalan Pola
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk mengklasifikasi bentuk suatu objek dalam citra digital menggunakan algoritma jaringan syaraf tiruan propagasi balik (backpropagation neural network).
Pada contoh ini dilakukan pengklasifikasian terhadap bentuk segi-3, segi-4, dan segi-5. Ciri yang digunakan untuk membedakan ketiga jenis bentuk tersebut adalah metric dan eccentricity.
Metric merupakan nilai perbandingan antara luas dan keliling objek. Sedangkan eccentricity merupakan nilai perbandingan antara jarak foci ellips minor dengan foci ellips mayor suatu objek. (Materi mengenai ekstraksi ciri lebih lanjut dapat dilihat pada laman berikut ini: Ekstraksi Ciri Citra).
Langkah-langkah pemrograman matlab untuk mengklasifikasi bentuk suatu objek dalam citra digital menggunakan matlab adalah sebagai berikut:
1. Menyiapkan data latih untuk proses pelatihan (training). Pada proses ini digunakan 45 citra data latih yang terdiri dari 15 citra segi-3, 15 citra segi-4, dan 15 citra segi-5.
Model Ruang Warna Pengolahan Citra
Dalam bidang pengolahan citra digital dikenal berbagai macam ruang warna (color space) citra.
Yang paling umum adalah ruang warna RGB (Red, Green, Blue).
Ruang warna RGB mendefinisikan suatu warna berdasarkan tiga kanal (channel) warna yaitu merah, hijau, dan biru.
Ruang warna RGB untuk citra truecolor 24 bit diilustrasikan oleh gambar berikut:
-read more->
k-Nearest Neighbor (k-NN) Menggunakan Matlab
Algoritma k-nearest neighbor (k-NN atau KNN) merupakan sebuah algoritma untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut.
Ilustrasi dari metode yang digunakan oleh algoritma k-nn ditunjukkan pada gambar di bawah ini:
Deteksi Tepi Citra Digital Menggunakan Matlab
Penentuan tepian suatu objek dalam citra merupakan salah satu wilayah pengolahan citra digital yang paling awal dan paling banyak diteliti. Proses ini seringkali ditempatkan sebagai langkah pertama dalam aplikasi segmentasi citra, yang bertujuan untuk mengenali objek-objek yang terdapat dalam citra ataupun konteks citra secara keseluruhan.
Deteksi tepi berfungsi untuk mengidentifikasi garis batas (boundary) dari suatu objek yang terdapat pada citra. Tepian dapat dipandang sebagai lokasi piksel dimana terdapat nilai perbedaan intensitas citra secara ekstrem. Sebuah edge detector bekerja dengan cara mengidentifikasi dan menonjolkan lokasi-lokasi piksel yang memiliki karakteristik tersebut.
Berikut ini merupakan contoh aplikasi programmatic GUI matlab untuk mendeteksi tepi suatu objek dalam citra menggunakan operator gradien, operator laplacian, dan operator canny. (Coding dapat dijalankan minimal menggunakan matlab versi r2014b).
1. Operator Gradien
a. Operator Gradien Orde Satu
-read more->
Cara Menghitung Luas , Keliling , dan Centroid suatu Citra
Proses pengenalan objek dalam citra umumnya membutuhkan suatu ciri yang dapat membedakan antara objek yang satu dengan objek lainnya. Ciri yang dapat diekstrak antara lain adalah ciri ukuran (luas dan keliling) dan posisi (koordinat centroid) dari suatu objek.
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk menghitung centroid, luas, dan keliling objek dalam suatu citra grayscale. Centroid merupakan koordinat titik tengah dari suatu objek. Luas merupakan banyaknya piksel yang menyusun suatu objek. Sedangkan keliling merupakan banyaknya piksel yang berada pada boundary objek. Hasil penghitungan geometris tersebut dapat digunakan sebagai ciri masukan dalam tahapan pengenalan pola morfologi/ bentuk.
Langkah-langkah pemrograman untuk menghitung luas, keliling, dan centroid suatu citra adalah sebagai berikut:
1. Membaca dan menampilkan citra grayscale
-read more->
Geometric Image Transformations
Dalam bidang pengolahan citra digital, terkadang diperlukan suatu proses transformasi geometri untuk memudahkan dalam pengolahan selanjutnya yang lebih kompleks. Berikut ini merupakan contoh aplikasi pemrograman GUI Matlab mengenai Geometric Image Transformations berupa operasi flip dan rotasi.
Tampilan GUI Matlab untuk transformasi geometri citra adalah:
1. Citra Asli (Original Image)