Blog Archives

Jaringan Syaraf Tiruan untuk Identifikasi Jenis Bunga


Jaringan syaraf tiruan (neural network) merupakan algoritma yang mampu melakukan identifikasi suatu kelas berdasarkan ciri masukan yang diberikan. Algoritma ini akan melatihkan ciri masukan yang diberikan pada masing-masing kelas sehingga diperoleh suatu arsitektur jaringan dan bobot-bobot awal yang mampu memetakan ciri masukan ke dalam kelas keluaran.

Terdapat banyak jenis jaringan syaraf tiruan, di antaranya adalah backpropagation, perceptron, probablistik neural network, radial basis network, dll.

Berikut ini merupakan contoh pemrograman matlab (menggunakan matlab r2015b) untuk mengidentifikasi jenis bunga menggunakan algoritma jaringan syaraf tiruan radial basis function (rbfnn). Pada proses pelatihan jaringan digunakan 100 citra latih yang terdiri dari 50 citra bunga dengan jenis kansas state flower dan 50 citra bunga berjenis marguerite daisy. Sedangkan pada proses pengujian digunakan 60 citra uji yang terdiri dari 30 citra bunga kansas state flower dan 50 citra bunga marguerite daisy.

Citra bunga yang digunakan dalam pemrograman ini diunduh dari halaman website http://www.robots.ox.ac.uk/~vgg/data/flowers/17/. Contoh citra bunga yang digunakan ditunjukkan pada gambar berikut.

-read more->

Segmentasi Citra dengan Metode Thresholding


Thresholding merupakan salah satu metode segmentasi citra yang memisahkan antara objek dengan background dalam suatu citra berdasarkan pada perbedaan tingkat kecerahannya atau gelap terang nya. Region citra yang cenderung gelap akan dibuat semakin gelap (hitam sempurna dengan nilai intensitas sebesar 0), sedangkan region citra yang cenderung terang akan dibuat semakin terang (putih sempurna dengan nilai intensitas sebesar 1). Oleh karena itu, keluaran dari proses segmentasi dengan metode thresholding adalah berupa citra biner dengan nilai intensitas piksel sebesar 0 atau 1. Setelah citra sudah tersegmentasi atau sudah berhasil dipisahkan objeknya dengan background, maka citra biner yang diperoleh dapat dijadikan sebagai masking utuk melakukan proses cropping sehingga diperoleh tampilan citra asli tanpa background atau dengan background yang dapat diubah-ubah.

Berikut ini merupakan contoh pemrograman matlab mengenai aplikasi dari metode thresholding untuk melakukan segmentasi terhadap citra digital. Setelah objek berhasil disegmentasi, proses selanjutnya adalah mengganti-ganti background citra rgb asli

Langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli

clc; clear; close all;

% Object
Img = imread('the mario bros.jpg');
figure, imshow(Img);

Sehingga diperoleh tampilan

-read more->

Jaringan Syaraf Tiruan Untuk Pengenalan Pola


Berikut ini merupakan contoh pemrograman matlab untuk mengklasifikasi bentuk suatu objek dalam citra digital menggunakan algoritma jaringan syaraf tiruan propagasi balik (backpropagation neural network).

Pada contoh ini dilakukan pengklasifikasian terhadap bentuk segi-3, segi-4, dan segi-5. Ciri yang digunakan untuk membedakan ketiga jenis bentuk tersebut adalah metric dan eccentricity.

Metric merupakan nilai perbandingan antara luas  dan keliling objek. Sedangkan eccentricity merupakan nilai perbandingan antara jarak foci ellips minor dengan foci ellips mayor suatu objek. (Materi mengenai ekstraksi ciri lebih lanjut dapat dilihat pada laman berikut ini: Ekstraksi Ciri Citra).

Langkah-langkah pemrograman matlab untuk mengklasifikasi bentuk suatu objek dalam citra digital menggunakan matlab adalah sebagai berikut:
1. Menyiapkan data latih untuk proses pelatihan (training). Pada proses ini digunakan 45 citra data latih yang terdiri dari 15 citra segi-3, 15 citra segi-4, dan 15 citra segi-5.

-read more->

Ekualisasi Histogram pada Citra Digital


Histogram Citra merupakan diagram yang menunjukkan distribusi nilai intensitas cahaya pada suatu citra. Pada histogram, sumbu-x menyatakan nilai intensitas piksel sedangkan sumbu-y menyatakan frekuensi kemunculan piksel. Dalam bidang pengolahan citra digital, terkadang perlu dilakukan pre-processing yang merupakan proses perbaikan kualitas citra dengan tujuan untuk memudahkan manusia atau komputer untuk merepresentasikan citra. Salah satu metode perbaikan kualitas citra adalah perataan histogram atau yang sering disebut sebagai histogram equalization.

Berikut ini merupakan pemrograman matlab untuk melakukan ekualisasi histogram citra secara manual.

Langkah-langkahnya adalah:

1. Membaca citra grayscale

clc;clear;close all;

I = imread('pout.tif');
figure, imshow(I);
title('Original Image')

-read more->

Pengolahan Citra Digital untuk Deteksi Tepi Obyek


Berikut ini merupakan contoh pemrograman matlab untuk mendeteksi objek dalam citra digital menggunakan metode deteksi tepi roberts.

Langkah-langkah pemrogramannya adalah sebagai berikut:

1. Membaca citra asli

-read more->

Pengolahan Citra Digital untuk Mendeteksi Warna dan Bentuk Obyek


Berikut ini merupakan pemrograman GUI Matlab untuk mendeteksi warna dan bentuk suatu objek pada citra digital.

Proses deteksi warna diawali dengan mengkonversi ruang warna citra RGB (Red, Green, Blue) menjadi HSV (Hue, Saturation, Value). Selanjutnya proses klasifikasi warna dilakukan berdasarkan pengelompokan nilai Hue.

Sedangkan proses deteksi bentuk diawali dengan mengkonversi ruang warna citra RGB menjadi grayscale. Setelah itu dilakukan thresholding sehingga diperoleh citra biner. Kemudian dilakukan ekstraksi ciri morfologi dari citra biner berdasarkan parameter eccentricity dan metric. Proses klasifikasi citra dilakukan berbasis aturan (rule based) sederhana.

1. Membuka tampilan GUI awal

-read more->

Algoritma k-means clustering dan Naive Bayes classifier untuk Pengenalan Pola Tesktur


K-means Clustering merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam satu atau lebih cluster/kelompok. Metode ini mempartisi data ke dalam cluster/kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain.

Sedangkan Naive Bayes Classifier merupakan salah satu metode machine learning yang memanfaatkan perhitungan probabilitas dan statistik. Metode ini dikemukakan oleh ilmuwan Inggris yaitu Thomas Bayes untuk memprediksi probabilitas di masa depan berdasarkan pengalaman di masa sebelumnya.

Berikut ini merupakan pemrograman matlab (menggunakan Matlab R2015b) mengenai pola tekstur citra menggunakan algoritma k-means clustering dan naive bayes classifier. Citra yang digunakan adalah citra tekstur Brodatz sejumlah 112 buah seperti tampak pada gambar di bawah ini:

-read more->

Model Ruang Warna Pengolahan Citra


Dalam bidang pengolahan citra digital dikenal berbagai macam ruang warna (color space) citra.

Yang paling umum adalah ruang warna RGB (Red, Green, Blue).

Ruang warna RGB mendefinisikan suatu warna berdasarkan tiga kanal (channel) warna yaitu merah, hijau, dan biru.

Ruang warna RGB untuk citra truecolor 24 bit diilustrasikan oleh gambar berikut:
-read more->

k-means clustering menggunakan matlab


Data clustering merupakan salah satu metode data mining yang bersifat tanpa arahan (unsupervised).

Ada dua jenis data clustering yang sering digunakan dalam proses pengelompokan data yaitu hierarchical (hirarki) data clustering dan non-hierarchical (non hirarki) data clustering.

K-means merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam satu atau lebih cluster/kelompok.

Metode ini mempartisi data ke dalam cluster/kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain.

Ilustrasi algoritma k-means ditunjukkan pada gambar di bawah ini:


-read more->

k-Nearest Neighbor (k-NN) Menggunakan Matlab


Algoritma k-nearest neighbor (k-NN atau KNN) merupakan sebuah algoritma untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut.

Ilustrasi dari metode yang digunakan oleh algoritma k-nn ditunjukkan pada gambar di bawah ini:

-read more->

%d bloggers like this: