Blog Archives
Pengolahan Citra untuk Deteksi Warna Kulit (Skin Detection)
Deteksi warna kulit (skin color detection) merupakan salah satu proses segmentasi yang memisahkan region objek dalam citra berdasarkan pada perbedaan warna. Objek yang memiliki warna tertentu dipisahkan dengan objek yang memiliki warna lainnya. Hasil segmentasi dapat digunakan untuk proses selanjutnya seperti ekstraksi ciri atau klasifikasi citra. Pada contoh ini, warna kulit didefiniskan dalam ruang warna YCbCr dengan nilai Cb antara 77 s.d 127 dan nilai Cr antara 133 s.d 173.
Deteksi warna kulit merupakan salah satu tahapan awal dalam computer vision untuk mendeteksi hal-hal yang berkaitan dengan manusia (people detection). Deteksi warna kulit dapat dijadikan sebagai metode segmentasi untuk pengenalan wajah (face recognition) maupun pengenalan organ tubuh lainnya. Sistem tersebut dapat dikembangkan lebih lanjut untuk sistem biometrik.
Langkah-langkah proses segmentasi warna kulit adalah sebagai berikut:
1. Melakukan penyeimbangan warna RGB (Color Balanced 24-bit RGB Image)
2. Melakukan transformasi ruang warna RGB menjadi YCbCr
3. Melakukan segmentasi warna kulit berdasarkan nilai Cb antara 77 s.d 127 dan nilai Cr antara 133 s.d 173
4. Menampilkan hasil segmentasi
Hasil segmentasi ditunjukkan pada gambar berikut:
No | Citra Asli | Hasil Deteksi Warna Kulit |
1 | ![]() |
![]() |
2 | ![]() |
![]() |
3 | ![]() |
![]() |
4 | ![]() |
![]() |
Pengolahan Citra Digital untuk Mendeteksi Warna dan Bentuk Obyek
Berikut ini merupakan contoh aplikasi pemrograman GUI Matlab untuk mendeteksi warna dan bentuk suatu objek pada citra digital.
Proses deteksi warna diawali dengan mengkonversi ruang warna citra RGB (Red, Green, Blue) menjadi HSV (Hue, Saturation, Value). Selanjutnya proses klasifikasi warna dilakukan berdasarkan pengelompokan nilai Hue.
Sedangkan proses deteksi bentuk diawali dengan mengkonversi ruang warna citra RGB menjadi grayscale. Setelah itu dilakukan thresholding sehingga diperoleh citra biner. Kemudian dilakukan ekstraksi ciri morfologi dari citra biner berdasarkan parameter eccentricity dan metric. Proses klasifikasi citra dilakukan berbasis aturan (rule based) sederhana.