Thresholding Citra


Citra digital merupakan representasi dari fungsi intensitas cahaya dalam bidang dua dimensi. Berdasarkan jenis warnanya, citra dapat dikelompokkan menjadi tiga jenis yaitu citra RGB, citra grayscale, dan citra biner.

Citra RGB

Citra Grayscale

Citra Biner

lena lena_gray lena_bw

Citra RGB merupakan citra yang tersusun oleh tiga kanal warna yaitu kanal merah, kanal hijau, dan kanal biru. Pada citra RGB 24-bit, masing-masing kanal warna memiliki nilai intensitas piksel dengan kedalaman bit sebesar 8-bit yang artinya memiliki variasi warna sebanyak 2^8 = 256 derajat warna (0 s.d 255). Setiap piksel pada citra RGB memiliki nilai intensitas yang merupakan kombinasi dari nilai R, G, dan B. Variasi warna pada setiap piksel pada citra RGB adalah sebanyak 256 x 256 x 256 = 16.777.216.

-read more->

Deteksi Titik Sudut Citra Untuk Identifikasi Bentuk


Proses identifikasi bentuk pada citra digital salah satunya dapat dilakukan dengan cara melakukan deteksi terhadap jumlah garis dan titik sudut penyusun objek dalam citra. Berikut ini merupakan contoh pemrograman matlab mengenai deteksi garis dan titik sudut menggunakan transformasi Hough.

Langkah-langkahnya adalah sebagai berikut:
1. Membaca, meresize, dan menampilkan citra

clc; clear; close all; warning off all;

% baca & resize citra
I = imread('bintang.jpg');
I = imresize(I,0.2);

% menampilkan citra asli
figure,imshow(I);
title('Citra Asli');

-read more->

Ekstraksi Ciri Wajah Menggunakan Algoritma Viola-Jones


Tahapan Face Recognition (Pengenalan Wajah) antara lain adalah face detection (deteksi wajah), feature extraction (ekstraksi ciri), dan recognition (pengenalan). Berikut ini merupakan contoh aplikasi deteksi wajah dan ekstraksi ciri wajah menggunakan bahasa pemrograman MATLAB. Objek yang dideteksi adalah wajah, mata (kanan dan kiri), hidung, dan mulut. Sedangkan ciri yang diekstrak adalah jarak antara masing-masing objek yang dideteksi.

1. Tampilan Halaman GUI awal

-read more->

Pengolahan Citra CT Scan Paru-Paru dengan Metode Segmentasi Active Contour


Pengolahan citra medis telah banyak dilakukan dengan mengembangkan berbagai macam metode. Pengolahan yang dilakukan di antaranya bertujuan untuk meningkatkan kualitas citra agar citra lebih mudah diinterpretasi dan untuk menganalisis citra secara objektif. Berikut ini merupakan contoh pemrograman MATLAB untuk melakukan pengolahan citra CT Scan Paru-Paru dengan metode segmentasi active contour. Citra diakuisisi dengan modalitas pesawat CT Scan berformat DICOM (Digital Imaging and Communications in Medicine). Pengolahan citra dilakukan untuk menghitung luas dan keliling daerah paru-paru.

Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Membaca citra asli

clc; clear; close all; warning off all;

Img = dicomread('1');
figure,imshow(Img,[])
title('Citra Asli')

-read more->

Identifikasi Jenis Buah Tomat Berdasarkan Analisis Bentuk Dan Tekstur


Analisis bentuk dan tekstur dapat digunakan untuk merancang sebuah sistem identifikasi objek. Berikut ini merupakan contoh pemrograman MATLAB untuk mengidentifikasi jenis buah tomat (hijau dan merah) berdasarkan analisis bentuk dan tekstur. Analisis bentuk dilakukan menggunakan parameter metric dan eccentricity, sedangkan analisis tekstur dilakukan menggunakan metode Gray Level Co-occurence Matrix (GLCM) dengan parameter contrast, correlation, energy, dan homogeneity.

Langkah-langkah pemrograman-nya adalah sebagai berikut:
1. Mempersiapkan citra buah tomat

Citra yang digunakan terdiri dari 4 citra buah tomat berwarna hijau dan 4 citra buah tomat berwarna merah

-read more->

Akuisisi Sinyal Suara Menggunakan MATLAB


Sinyal suara (audio signal) merupakan sinyal yang dihasilkan oleh gelombang audiosonik (gelombang bunyi yang memiliki frekuensi antara 20 Hz sampai 20000 Hz).

Penerapan pengolahan sinyal suara antara lain adalah sistem pengenalan suara manusia, deteksi bunyi kerusakan mesin, deteksi kelainan detak jantung, dan lain-lain.

Berikut ini merupakan contoh pemrograman GUI matlab untuk melakukan akuisisi sinyal suara. Proses akuisisi dilakukan dengan cara merekam suara menggunakan mikrofon yang ada pada komputer atau laptop.

Langkah-langkah pemrogramannya yaitu:
1. Membuat interface GUI dengan desain tampilan seperti pada gambar di bawah ini

-read more->

Contrast Stretching dan Histogram Equalization


Perbaikan kualitas citra (Image Enhancement) merupakan tahapan pre-processing yang umumnya dilakukan sebelum tahapan segmentasi. Dalam materi ini dibahas dua jenis perbaikan kualitas citra yaitu contrast stretching dan histogram equalization. Contrast stretching merupakan metode perbaikan kualitas citra yang bertujuan untuk meningkatkan atau menurunkan kontras suatu citra dengan cara memperlebar atau mempersempit range nilai intensitas piksel citra. Materi mengenai perbedaan kontras tinggi dan rendah dapat dilihat pada halaman berikut ini: Perbedaan citra gelap, terang, kontras rendah, dan kontras tinggi. Sedangkan histogram equalization merupakan metode perbaikan kualitas citra yang bertujuan untuk meratakan persebaran nilai intensitas piksel suatu citra. Materi mengenai histogram equalization lebih lanjut dapat dilihat pada halaman berikut ini: Ekualisasi Histogram pada Citra Digital

Pada materi ini menggunakan nilai PSNR dan MSE sebagai indikator perbandingan citra hasil perbaikan kualitas citra dengan citra asli.

Langkah-langkah pemrograman GUI matlab untuk melakukan contrast stretching dan histogram equalization pada citra digital adalah sebagai berikut:

1. Membuka tampilan GUI awal

-read more->

Pengenalan Warna Objek


Komponen Hue dari citra HSV (Hue, Saturation, Value) merupakan suatu komponen yang merepresentasikan warna dari panjang gelombang cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Oleh karena itu, komponen ini dapat digunakan sebagai acuan untuk melakukan pengenalan warna suatu objek pada citra digital.

Berikut ini merupakan pengolahan citra digital untuk melakukan pengenalan warna suatu objek berdasarkan komponen Hue.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('stabilo.jpg');
figure, imshow(I);

-read more->

Mendeteksi Objek yang Berbentuk Lingkaran


Bentuk merupakan salah satu ciri yang dapat diekstrak dari suatu objek. Ciri ini dapat digunakan untuk membedakan antara objek yang satu dengan lainnya. Berikut ini merupakan contoh pengolahan citra untuk mendeteksi objek yang berbentuk lingkaran. Salah satu parameter yang dapat digunakan untuk mendefinisikan bentuk lingkaran adalah metric. Metric merupakan perbandingan antara luas dan keliling suatu objek. Nilai metric berkisar antara 0 s.d 1. Objek yang berbentuk lingkaran, nilai metric nya mendekati angka satu. Materi lebih lanjut mengenai nilai metric dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan untuk mendeteksi objek yang berbentuk lingkaran adalah:

1. Membaca citra RGB asli

clc; clear; close all;
I = imread('shape object.jpg');
figure, imshow(I);

-read more->

Ekstraksi Ciri Bentuk dan Ukuran


Ciri yang dapat diekstrak dari suatu objek dalam citra antara lain adalah warna, bentuk, ukuran, dan tekstur. Ciri tersebut digunakan sebagai parameter untuk membedakan antara objek satu dengan objek yang lain.

Berikut ini merupakan contoh pengolahan citra digital untuk melakukan proses ekstraksi ciri bentuk dan ukuran pada citra RGB. Parameter yang digunakan untuk mewakili ciri bentuk adalah metric dan eccentricity, sedangkan parameter yang mewakili ciri ukuran adalah luas dan keliling.

Materi mengenai definisi masing-masing parameter ciri bentuk dan ukuran dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all; warning off all;
 
I = imread('fruits.jpg');
figure, imshow(I);

-read more->

Ekstraksi Ciri Nilai RGB


Ekstraksi ciri merupakan tahapan mengekstrak informasi yang terkandung dalam suatu objek dalam citra digital. Informasi tersebut digunakan untuk membedakan antara objek yang satu dengan objek lainnya pada tahapan pengenalan atau identifikasi citra.

Berikut ini merupakan contoh pengolahan citra untuk melakukan proses ekstraksi ciri warna berdasarkan nilai rata-rata RGB pada masing-masing objek yang tersegmentasi.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('balls.jpg');
figure, imshow(I);

-read more->

%d bloggers like this: