Blog Archives
Klasifikasi Jenis Sayuran Menggunakan Algoritma PCA dan KNN
Apakah yang dimaksud dengan Principal Component Analysis (PCA)??
Principal Component Analysis (PCA) merupakan suatu algoritma yang mampu mengkonversi sekelompok data yang pada awalnya saling berkorelasi menjadi data yang tidak saling berkorelasi (Principal Component). Jumlah Principal Component yang dihasilkan adalah sama dengan jumlah data aslinya, tetapi dapat direduksi dengan jumlah yang lebih kecil dan tetap mampu merepresentasikan data asli dengan baik.
Berikut ini merupakan contoh pemrograman matlab untuk klasifikasi jenis sayuran menggunakan algoritma PCA dan KNN. Jenis sayuran yang akan diklasifikasi adalah sayur kol, sawi, dan wortel. Ketiga jenis sayur tersebut dibedakan berdasarkan ciri warna dan ukurannya. Contoh citra sayuran pada masing-masing kelas ditunjukkan pada gambar di bawah ini.
Pengenalan Warna Objek
Komponen Hue dari citra HSV (Hue, Saturation, Value) merupakan suatu komponen yang merepresentasikan warna dari panjang gelombang cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Oleh karena itu, komponen ini dapat digunakan sebagai acuan untuk melakukan pengenalan warna suatu objek pada citra digital.
Berikut ini merupakan contoh pengolahan citra digital untuk melakukan pengenalan warna suatu objek berdasarkan komponen Hue.
Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:
1. Membaca citra RGB asli
clc; clear; close all; I = imread('stabilo.jpg'); figure, imshow(I);
Mendeteksi Objek yang Berbentuk Lingkaran
Bentuk merupakan salah satu ciri yang dapat diekstrak dari suatu objek. Ciri ini dapat digunakan untuk membedakan antara objek yang satu dengan lainnya. Berikut ini merupakan contoh aplikasi pengolahan citra untuk mendeteksi objek yang berbentuk lingkaran. Salah satu parameter yang dapat digunakan untuk mendefinisikan bentuk lingkaran adalah metric. Metric merupakan nilai perbandingan antara luas dan keliling suatu objek. Nilai metric berkisar antara 0 s.d 1. Objek yang berbentuk lingkaran, nilai metric nya mendekati angka satu. Materi lebih lanjut mengenai nilai metric dapat dilihat pada halaman berikut ini: Ekstraksi Ciri
Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan untuk mendeteksi objek yang berbentuk lingkaran adalah:
1. Membaca citra RGB asli
clc; clear; close all; I = imread('shape object.jpg'); figure, imshow(I);

Ekstraksi Ciri Bentuk dan Ukuran
Ciri yang dapat diekstrak dari suatu objek dalam citra antara lain adalah warna, bentuk, ukuran, dan tekstur. Ciri tersebut dapat digunakan sebagai parameter untuk membedakan antara objek yang satu dengan objek lainnya.
Berikut ini merupakan contoh aplikasi pengolahan citra digital untuk melakukan proses ekstraksi ciri bentuk dan ukuran pada citra RGB. Parameter yang digunakan untuk mewakili ciri bentuk adalah metric dan eccentricity, sedangkan parameter yang mewakili ciri ukuran adalah luas dan keliling.
Materi mengenai definisi masing-masing parameter ciri bentuk dan ukuran dapat dilihat pada halaman berikut ini: Ekstraksi Ciri
Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:
1. Membaca citra RGB asli
clc; clear; close all; warning off all; I = imread('fruits.jpg'); figure, imshow(I);
Ekstraksi Ciri Nilai RGB
Ekstraksi ciri merupakan tahapan mengekstrak informasi yang terkandung dalam suatu objek dalam citra digital. Informasi tersebut digunakan untuk membedakan antara objek yang satu dengan objek lainnya pada tahapan pengenalan atau identifikasi citra.
Berikut ini merupakan contoh aplikasi pengolahan citra untuk melakukan proses ekstraksi ciri warna berdasarkan nilai rata-rata RGB pada masing-masing objek yang tersegmentasi.
Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:
1. Membaca citra RGB asli
clc; clear; close all; I = imread('balls.jpg'); figure, imshow(I);
Multi-Level Thresholding
Multi-level thresholding merupakan metode segmentasi citra yang menggunakan dua atau lebih nilai threshold. Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode multi-level thresholding adalah:
di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T1 adalah nilai threshold bawah
T2 adalah nilai threshold atas
Ilustrasi perubahan nilai piksel pada proses multi-level thresholding ditunjukkan pada gambar di bawah ini
Thresholding
Thresholding merupakan salah satu metode segmentasi citra di mana prosesnya didasarkan pada perbedaan derajat keabuan citra.
Dalam proses ini dibutuhkan suatu nilai batas yang disebut dengan nilai threshold.
Nilai intensitas citra yang lebih dari atau sama dengan nilai threshold akan diubah menjadi 1 (berwarna putih) sedangkan nilai intensitas citra yang kurang dari nilai threshold akan diubah menjadi 0 (berwana hitam). Sehingga citra keluaran dari hasil thresholding adalah berupa citra biner.
Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode thresholding adalah:
di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T adalah nilai threshold
Thresholding Citra
Citra digital merupakan representasi dari fungsi intensitas cahaya dalam bidang dua dimensi. Berdasarkan jenis warnanya, citra dapat dikelompokkan menjadi tiga jenis yaitu citra RGB, citra grayscale, dan citra biner.
Citra RGB |
Citra Grayscale |
Citra Biner |
![]() |
![]() |
![]() |
Citra RGB merupakan citra yang tersusun oleh tiga kanal warna yaitu kanal merah, kanal hijau, dan kanal biru. Pada citra RGB 24-bit, masing-masing kanal warna memiliki nilai intensitas piksel dengan kedalaman bit sebesar 8-bit yang artinya memiliki variasi warna sebanyak 2^8 = 256 derajat warna (0 s.d 255). Setiap piksel pada citra RGB memiliki nilai intensitas yang merupakan kombinasi dari nilai R, G, dan B. Variasi warna pada setiap piksel pada citra RGB adalah sebanyak 256 x 256 x 256 = 16.777.216.
Segmentasi Citra dengan Metode Multi Thresholding dan K-Means Clustering
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan segmentasi citra dengan menggunakan dua buah metode yang berbeda. Metode yang pertama yaitu multi thresholding, sedangkan metode yang kedua adalah k-means clustering. Segmentasi dilakukan terhadap citra rose.jpg yang ditunjukkan pada gambar di bawah ini.
Jaringan Syaraf Tiruan untuk Klasifikasi Citra Daun
Salah satu penerapan dari algoritma jaringan syaraf tiruan adalah untuk proses klasifikasi citra. Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan klasifikasi terhadap citra daun. Citra daun dikelompokkan ke dalam 4 kelas spesies yaitu Bougainvillea sp, Geranium sp, Magnolia soulangeana, dan Pinus sp. Pada contoh ini digunakan 40 citra daun yang terdiri dari 10 citra pada masing-masing kelas. Contoh dari citra daun yang digunakan ditunjukkan pada gambar di bawah ini:
Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Mempersiapkan citra latih dan citra uji. Pada contoh ini 40 citra daun dibagi menjadi dua bagian yaitu 24 citra untuk citra latih dan 16 citra untuk citra uji.