Blog Archives

Pengenalan Warna Objek


Komponen Hue dari citra HSV (Hue, Saturation, Value) merupakan suatu komponen yang merepresentasikan warna dari panjang gelombang cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Oleh karena itu, komponen ini dapat digunakan sebagai acuan untuk melakukan pengenalan warna suatu objek pada citra digital.

Berikut ini merupakan pengolahan citra digital untuk melakukan pengenalan warna suatu objek berdasarkan komponen Hue.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('stabilo.jpg');
figure, imshow(I);

-read more->

Mendeteksi Objek yang Berbentuk Lingkaran


Bentuk merupakan salah satu ciri yang dapat diekstrak dari suatu objek. Ciri ini dapat digunakan untuk membedakan antara objek yang satu dengan lainnya. Berikut ini merupakan contoh pengolahan citra untuk mendeteksi objek yang berbentuk lingkaran. Salah satu parameter yang dapat digunakan untuk mendefinisikan bentuk lingkaran adalah metric. Metric merupakan perbandingan antara luas dan keliling suatu objek. Nilai metric berkisar antara 0 s.d 1. Objek yang berbentuk lingkaran, nilai metric nya mendekati angka satu. Materi lebih lanjut mengenai nilai metric dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan untuk mendeteksi objek yang berbentuk lingkaran adalah:

1. Membaca citra RGB asli

clc; clear; close all;
I = imread('shape object.jpg');
figure, imshow(I);

-read more->

Ekstraksi Ciri Bentuk dan Ukuran


Ciri yang dapat diekstrak dari suatu objek dalam citra antara lain adalah warna, bentuk, ukuran, dan tekstur. Ciri tersebut digunakan sebagai parameter untuk membedakan antara objek satu dengan objek yang lain.

Berikut ini merupakan contoh pengolahan citra digital untuk melakukan proses ekstraksi ciri bentuk dan ukuran pada citra RGB. Parameter yang digunakan untuk mewakili ciri bentuk adalah metric dan eccentricity, sedangkan parameter yang mewakili ciri ukuran adalah luas dan keliling.

Materi mengenai definisi masing-masing parameter ciri bentuk dan ukuran dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all; warning off all;
 
I = imread('fruits.jpg');
figure, imshow(I);

-read more->

Ekstraksi Ciri Nilai RGB


Ekstraksi ciri merupakan tahapan mengekstrak informasi yang terkandung dalam suatu objek dalam citra digital. Informasi tersebut digunakan untuk membedakan antara objek yang satu dengan objek lainnya pada tahapan pengenalan atau identifikasi citra.

Berikut ini merupakan contoh pengolahan citra untuk melakukan proses ekstraksi ciri warna berdasarkan nilai rata-rata RGB pada masing-masing objek yang tersegmentasi.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('balls.jpg');
figure, imshow(I);

-read more->

Multi-Level Thresholding


Multi-level thresholding merupakan metode segmentasi citra thresholding yang menggunakan dua atau lebih nilai threshold. Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode multi-level thresholding adalah:

di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T1 adalah nilai threshold bawah
T2 adalah nilai threshold atas

Ilustrasi perubahan nilai piksel pada proses multi-level thresholding ditunjukkan pada gambar di bawah ini

-read more->

Thresholding


Thresholding merupakan salah satu metode segmentasi citra di mana prosesnya didasarkan pada perbedaan derajat keabuan citra.

Dalam proses ini dibutuhkan suatu nilai batas yang disebut dengan nilai threshold.

Nilai intensitas citra yang lebih dari atau sama dengan nilai threshold akan diubah menjadi 1 (berwarna putih) sedangkan nilai intensitas citra yang kurang dari nilai threshold akan diubah menjadi 0 (berwana hitam). Sehingga citra keluaran dari hasil thresholding adalah berupa citra biner.

Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode thresholding adalah:

di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T adalah nilai threshold

-read more->

Pengolahan Citra Digital


Pengolahan Citra Digital (Digital Image Processing) merupakan bidang ilmu yang mempelajari tentang bagaimana suatu citra itu dibentuk, diolah, dan dianalisis sehingga menghasilkan informasi yang dapat dipahami oleh manusia.

Sebelum mempelajari lebih lanjut mengenai pengolahan citra digital, kita perlu mengetahui definisi dari citra itu terlebih dahulu.

Citra merupakan fungsi dari intensitas cahaya yang direpresentasikan dalam bidang dua dimensi.

Berdasarkan bentuk sinyal penyusunnya, citra dapat digolongkan menjadi dua jenis yaitu citra analog dan citra digital. Citra analog adalah citra yang dibentuk dari sinyal analog yang bersifat kontinyu, sedangkan citra digital adalah citra yang dibentuk dari sinyal digital yang bersifat diskrit.

Citra analog dihasilkan dari alat akuisisi citra analog, contohnya adalah mata manusia dan kamera analog. Gambaran yang tertangkap oleh mata manusia dan foto atau film yang tertangkap oleh kamera analog merupakan contoh dari citra analog. Citra tersebut memiliki kualitas dengan tingkat kerincian (resolusi) yang sangat baik tetapi memiliki kelemahan di antaranya adalah tidak dapat disimpan, diolah, dan diduplikasi di dalam komputer.

-read more->

Ekstraksi Ciri Citra Grayscale


Ekstraksi ciri merupakan tahapan yang sangat penting dalam pengenalan pola. Tahapan ini bertujuan untuk memperoleh informasi yang terkandung dalam suatu citra untuk kemudian dijadikan sebagai acuan untuk membedakan antara citra yang satu dengan citra yang lain.

Ekstraksi ciri dapat dilakukan setelah tahapan segmentasi citra (memisahkan antara objek dengan background) maupun tanpa segmentasi citra (objek adalah background dan background adalah objek).

Berikut ini merupakan contoh pemrograman matlab untuk melakukan ekstraksi ciri citra grayscale baik yang didahului dengan tahapan segmentasi maupun tidak.

Langkah-langkah pemrogramannya yaitu:

A. Ekstraksi ciri didahului dengan segmentasi

1. Membaca dan menampilkan citra RGB asli

clc; clear; close all; warning off all;
I = imread('candy.png');
figure, imshow(I);

candy

-read more->

Segmentasi Citra dengan Metode Thresholding


Thresholding merupakan salah satu metode segmentasi citra yang memisahkan antara objek dengan background dalam suatu citra berdasarkan pada perbedaan tingkat kecerahannya atau gelap terang nya. Region citra yang cenderung gelap akan dibuat semakin gelap (hitam sempurna dengan nilai intensitas sebesar 0), sedangkan region citra yang cenderung terang akan dibuat semakin terang (putih sempurna dengan nilai intensitas sebesar 1). Oleh karena itu, keluaran dari proses segmentasi dengan metode thresholding adalah berupa citra biner dengan nilai intensitas piksel sebesar 0 atau 1. Setelah citra sudah tersegmentasi atau sudah berhasil dipisahkan objeknya dengan background, maka citra biner yang diperoleh dapat dijadikan sebagai masking utuk melakukan proses cropping sehingga diperoleh tampilan citra asli tanpa background atau dengan background yang dapat diubah-ubah.

Berikut ini merupakan contoh pemrograman matlab mengenai aplikasi dari metode thresholding untuk melakukan segmentasi terhadap citra digital. Setelah objek berhasil disegmentasi, proses selanjutnya adalah mengganti-ganti background citra rgb asli

Langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli

clc; clear; close all;

% Object
Img = imread('the mario bros.jpg');
figure, imshow(Img);

Sehingga diperoleh tampilan

-read more->

Segmentasi Citra Grayscale dengan Metode K-Means Clustering


K-means clustering merupakan salah satu algoritma yang dapat mempartisi data menjadi beberapa region kluster. Proses partisi data didasarkan pada jarak terdekat antara data dengan centroid masing-masing kluster. Berikut ini merupakan salah satu contoh pemrograman matlab mengenai segmentasi citra grayscale dengan metode k-means clustering. Citra yang digunakan adalah citra cat.jpg di mana objek yang ingin disegmentasi adalah berupa hewan kucing, sedangkan background adalah berupa rumput.

Langkah-langkah segmentasi citra adalah sebagai berikut:
1. Membaca citra rgb asli

-read more->

%d bloggers like this: