Blog Archives

Pengolahan Citra Digital


Pengolahan Citra Digital (Digital Image Processing) merupakan bidang ilmu yang mempelajari tentang bagaimana suatu citra itu dibentuk, diolah, dan dianalisis sehingga menghasilkan informasi yang dapat dipahami oleh manusia.

Sebelum mempelajari lebih lanjut mengenai pengolahan citra digital, kita perlu mengetahui definisi dari citra itu terlebih dahulu.

Citra merupakan fungsi dari intensitas cahaya yang direpresentasikan dalam bidang dua dimensi.

Berdasarkan bentuk sinyal penyusunnya, citra dapat digolongkan menjadi dua jenis yaitu citra analog dan citra digital. Citra analog adalah citra yang dibentuk dari sinyal analog yang bersifat kontinyu, sedangkan citra digital adalah citra yang dibentuk dari sinyal digital yang bersifat diskrit.

Citra analog dihasilkan dari alat akuisisi citra analog, contohnya adalah mata manusia dan kamera analog. Gambaran yang tertangkap oleh mata manusia dan foto atau film yang tertangkap oleh kamera analog merupakan contoh dari citra analog. Citra tersebut memiliki kualitas dengan tingkat kerincian (resolusi) yang sangat baik tetapi memiliki kelemahan di antaranya adalah tidak dapat disimpan, diolah, dan diduplikasi di dalam komputer.

-read more->

Cara Menghitung Nilai MSE, RMSE, dan PSNR pada Citra Digital


Mean Square Error (MSE), Root Mean Squared Error (RMSE), dan Peak Signal-to-Noise Ratio (PSNR) merupakan contoh parameter yang biasa digunakan sebagai indikator untuk mengukur kemiripan dua buah citra. Parameter tsb sering digunakan untuk membandingkan hasil pengolahan citra dengan citra awal atau citra asli. Persamaan yang digunakan untuk menghitung ketiga paramater tersebut adalah sebagai berikut:

MSE dan RMSE tidak memiliki satuan sedangkan satuan dari PSNR adalah desibel. Semakin mirip kedua citra maka nilai MSE dan RMSE nya semakin mendekati nilai nol. Sedangkan pada PSNR, dua buah citra dikatakan memiliki tingkat kemiripan yang rendah jika nilai PSNR di bawah 30 dB.

Berikut ini merupakan contoh pemrograman GUI matlab untuk menghitung nilai MSE, RMSE, dan PSNR. Ketiga nilai tersebut digunakan untuk menghitung tingkat kemiripan citra yang terkontaminasi derau/noise dengan citra asli dan citra hasil restorasi dengan citra asli. Derau aditif ditambahkan pada citra asli antara lain adalah derau impuls (salt & pepper), derau uniform, derau gaussian, dan derau rayleigh. Sedangkan filter yang digunakan untuk merestorasi citra antara lain adalah filter rata-rata dan filter median masing-masing menggunakan kernel berukuran 3 x 3 dan 5 x 5.

-read more->

Segmentasi Citra dengan Metode Thresholding


Thresholding merupakan salah satu metode segmentasi citra yang memisahkan antara objek dengan background dalam suatu citra berdasarkan pada perbedaan tingkat kecerahannya atau gelap terang nya. Region citra yang cenderung gelap akan dibuat semakin gelap (hitam sempurna dengan nilai intensitas sebesar 0), sedangkan region citra yang cenderung terang akan dibuat semakin terang (putih sempurna dengan nilai intensitas sebesar 1). Oleh karena itu, keluaran dari proses segmentasi dengan metode thresholding adalah berupa citra biner dengan nilai intensitas piksel sebesar 0 atau 1. Setelah citra sudah tersegmentasi atau sudah berhasil dipisahkan objeknya dengan background, maka citra biner yang diperoleh dapat dijadikan sebagai masking utuk melakukan proses cropping sehingga diperoleh tampilan citra asli tanpa background atau dengan background yang dapat diubah-ubah.

Berikut ini merupakan contoh pemrograman matlab mengenai aplikasi dari metode thresholding untuk melakukan segmentasi terhadap citra digital. Setelah objek berhasil disegmentasi, proses selanjutnya adalah mengganti-ganti background citra rgb asli

Langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli

clc; clear; close all;

% Object
Img = imread('the mario bros.jpg');
figure, imshow(Img);

Sehingga diperoleh tampilan

-read more->

Pengolahan Citra untuk Ekstraksi Ciri Objek


Ekstraksi ciri citra merupakan tahapan mengekstrak ciri atau informasi yang dimiliki oleh suatu objek dalam citra. Ciri atau informasi tersebut dapat digunakan untuk membedakan antara objek yang satu dengan objek lainnya.

Ekstraksi ciri citra merupakan tahapan yang sangat penting dalam sebuah sistem visi komputer. Tahapan ini menentukan baik tidaknya tingkat pengenalan objek yang dilakukan oleh komputer.

Dalam pemilihan ciri hendaknya memperhatikan hal-hal sebagai berikut:

  1. Secara visual, ciri apakah yang membedakan antara objek satu dengan lainnya. Apakah bentuknya, warnanya, teksturnya, ukurannya, atau geometrinya.
  2. Parameter apakah yang mewakili ciri tersebut. Misalnya secara visual antara objek satu dengan lainnya tampak berbeda ukurannya, maka parameter yang dapat digunakan untuk mengenali objek adalah luas.
  3. Menentukan jumlah parameter yang akan digunakan. Semakin banyak parameter pada umumnya tingkat pengenalan semakin baik. Namun harus dipastikan bahwa parameter-parameter yang digunakan benar-benar dapat membedakan antar objek.

Ciri yang diekstrak dalam tahapan ekstraksi ciri kemudian digunakan sebagai masukan dalam tahapan klasifikasi objek. Tahapan klasifikasi dapat menggunakan berbagai jenis algoritma ataupun dapat juga menggunakan aturan if else sederhana.

Berikut ini merupakan contoh pemrograman komputer menggunakan bahasa pemrograman MATLAB untuk melakukan ekstraksi ciri objek dalam citra digital. Citra yang digunakan adalah citra ‘sand play set.jpg’ yang ditunjukkan pada gambar di bawah ini:

-read more->

Segmentasi Warna Citra Digital


Segmentasi citra merupakan suatu proses yang bertujuan untuk memisahkan antara region foreground dengan region background. Pemisahan tersebut didasarkan pada perbedaan karakteristik masing-masing region yang mencolok.

Pada contoh pemrograman ini, dilakukan segmentasi citra berdasarkan pada perbedaan warna antara foreground dengan background. Dalam citra digital, warna yang merupakan spektrum cahaya tampak (merah, jingga, kuning, hijau, biru, ungu) direpresentasikan oleh nilai Hue. Oleh sebab itu, proses segmentasi citra pada pemrograman ini dilakukan pada ruang warna HSV (Hue, Saturation, Value).

Langkah-langkah pemrograman matlab untuk melakukan segmentasi warna adalah sebagai berikut:
1. Membaca dan menampilkan citra asli. Citra yang digunakan adalah citra bird.jpg di mana foreground atau objek yang dimaksud adalah berupa burung.

clc; clear; close all; warning off all;

% Membaca citra asli
RGB = imread('bird.jpg');
figure, imshow(RGB);

diperoleh tampilan

-read more->

Pengolahan Citra Biner


Penghitungan terhadap atribut-atribut yang melekat pada suatu objek dalam citra digital secara sederhana dapat dilakukan dengan cara mengkonversi citra asli (RGB ataupun grayscale) menjadi citra biner terlebih dahulu. Setelah diperoleh citra biner, maka selanjutnya atribut-atribut (misalnya luas dan keliling) dapat dihitung. Namun terkadang citra biner tersebut perlu diolah lebih lanjut agar citra biner benar-benar tepat merepresentasikan objek yang dimaksud.

Berikut ini merupakan contoh pemrograman matlab untuk melakukan proses segmentasi  dan analisis citra. Langkah-langkah nya yaitu:
1. Membaca dan menampilkan citra asli. Pada contoh ini citra yang digunakan adalah citra ‘airplane.jpg’ di mana objek yang dikehendaki adalah berupa pesawat, sedangkan background adalah berupa langit.

clc; clear; close all; warning off all;

Img = imread('airplane.jpg');
figure, imshow(Img);

sehingga diperoleh tampilan

-read more->

Pengolahan Citra untuk Deteksi Warna Kulit (Skin Detection)


Deteksi warna kulit (skin color detection) merupakan salah satu proses segmentasi yang memisahkan region objek dalam citra berdasarkan pada perbedaan warna. Objek yang memiliki warna tertentu dipisahkan dengan objek yang memiliki warna lainnya. Hasil segmentasi dapat digunakan untuk proses selanjutnya seperti ekstraksi ciri atau klasifikasi citra. Pada contoh ini, warna kulit didefiniskan dalam ruang warna  YCbCr dengan nilai Cb antara 77 s.d 127 dan nilai Cr antara 133 s.d 173.

Deteksi warna kulit merupakan salah satu tahapan awal dalam computer vision untuk mendeteksi hal-hal yang berkaitan dengan manusia (people detection). Deteksi warna kulit dapat dijadikan sebagai metode segmentasi  untuk pengenalan wajah (face recognition) maupun pengenalan organ tubuh lainnya. Sistem tersebut dapat dikembangkan lebih lanjut untuk sistem biometrik.

Langkah-langkah proses segmentasi warna kulit adalah sebagai berikut:
1. Melakukan penyeimbangan warna RGB (Color Balanced 24-bit RGB Image)
2. Melakukan transformasi ruang warna RGB menjadi YCbCr
3. Melakukan segmentasi warna kulit berdasarkan nilai Cb antara 77 s.d 127 dan nilai Cr antara 133 s.d 173
4. Menampilkan hasil segmentasi

Hasil segmentasi ditunjukkan pada gambar berikut:

No                     Citra Asli      Hasil Deteksi Warna Kulit
1
2
3
4

-read more->

%d bloggers like this: