Blog Archives
Pengenalan Warna Objek
Komponen Hue dari citra HSV (Hue, Saturation, Value) merupakan suatu komponen yang merepresentasikan warna dari panjang gelombang cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Oleh karena itu, komponen ini dapat digunakan sebagai acuan untuk melakukan pengenalan warna suatu objek pada citra digital.
Berikut ini merupakan contoh pengolahan citra digital untuk melakukan pengenalan warna suatu objek berdasarkan komponen Hue.
Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:
1. Membaca citra RGB asli
clc; clear; close all; I = imread('stabilo.jpg'); figure, imshow(I);
Mendeteksi Objek yang Berbentuk Lingkaran
Bentuk merupakan salah satu ciri yang dapat diekstrak dari suatu objek. Ciri ini dapat digunakan untuk membedakan antara objek yang satu dengan lainnya. Berikut ini merupakan contoh aplikasi pengolahan citra untuk mendeteksi objek yang berbentuk lingkaran. Salah satu parameter yang dapat digunakan untuk mendefinisikan bentuk lingkaran adalah metric. Metric merupakan nilai perbandingan antara luas dan keliling suatu objek. Nilai metric berkisar antara 0 s.d 1. Objek yang berbentuk lingkaran, nilai metric nya mendekati angka satu. Materi lebih lanjut mengenai nilai metric dapat dilihat pada halaman berikut ini: Ekstraksi Ciri
Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan untuk mendeteksi objek yang berbentuk lingkaran adalah:
1. Membaca citra RGB asli
clc; clear; close all; I = imread('shape object.jpg'); figure, imshow(I);

Multi-Level Thresholding
Multi-level thresholding merupakan metode segmentasi citra yang menggunakan dua atau lebih nilai threshold. Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode multi-level thresholding adalah:
di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T1 adalah nilai threshold bawah
T2 adalah nilai threshold atas
Ilustrasi perubahan nilai piksel pada proses multi-level thresholding ditunjukkan pada gambar di bawah ini
Histogram Citra
Histogram citra merupakan diagram yang menggambarkan distribusi frekuensi nilai intensitas piksel dalam suatu citra. Sumbu horizontal merupakan nilai intensitas piksel sedangkan sumbu vertikal merupakan frekuensi/jumlah piksel. Histogram dari sebuah citra ditunjukkan pada Gambar 1.
Berikut ini merupakan contoh karakteristik citra grayscale berdasarkan distribusi histogramnya.
a. Citra Gelap
Citra gelap merupakan citra yang memiliki banyak piksel dengan nilai intensitas mendekati 0. Distribusi nilai intensitas citra gelap cenderung berada pada daerah sebelah kiri histogram. Contoh citra gelap dan histogramnya ditunjukkan pada Gambar 2.
Thresholding
Thresholding merupakan salah satu metode segmentasi citra di mana prosesnya didasarkan pada perbedaan derajat keabuan citra.
Dalam proses ini dibutuhkan suatu nilai batas yang disebut dengan nilai threshold.
Nilai intensitas citra yang lebih dari atau sama dengan nilai threshold akan diubah menjadi 1 (berwarna putih) sedangkan nilai intensitas citra yang kurang dari nilai threshold akan diubah menjadi 0 (berwana hitam). Sehingga citra keluaran dari hasil thresholding adalah berupa citra biner.
Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode thresholding adalah:
di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T adalah nilai threshold
Pengolahan Citra Digital
Pengolahan Citra Digital (Digital Image Processing) merupakan bidang ilmu yang mempelajari tentang bagaimana suatu citra itu dibentuk, diolah, dan dianalisis sehingga menghasilkan informasi yang dapat dipahami oleh manusia.
Sebelum mempelajari lebih lanjut mengenai pengolahan citra digital, kita perlu mengetahui definisi dari citra itu terlebih dahulu.
Citra merupakan fungsi dari intensitas cahaya yang direpresentasikan dalam bidang dua dimensi.
Berdasarkan bentuk sinyal penyusunnya, citra dapat digolongkan menjadi dua jenis yaitu citra analog dan citra digital. Citra analog adalah citra yang dibentuk dari sinyal analog yang bersifat kontinyu, sedangkan citra digital adalah citra yang dibentuk dari sinyal digital yang bersifat diskrit.
Citra analog dihasilkan dari alat akuisisi citra analog, contohnya adalah mata manusia dan kamera analog. Gambaran yang tertangkap oleh mata manusia dan foto atau film yang tertangkap oleh kamera analog merupakan contoh dari citra analog. Citra tersebut memiliki kualitas dengan tingkat kerincian (resolusi) yang sangat baik tetapi memiliki kelemahan di antaranya adalah tidak dapat disimpan, diolah, dan diduplikasi di dalam komputer.
Citra dan Histogram menggunakan GUI Matlab
Karakteristik suatu citra digital dapat diketahui dengan cara menganalisis distribusi frekuensi nilai piksel pada histogramnya.
Berikut ini merupakan contoh GUI Matlab representasi histogram pada berbagai jenis citra digital. Pada jenis citra RGB, histogram ditampilkan pada masing-masing kanal warna yaitu kanal merah, kanal hiaju, dan kanal biru. Pada jenis citra grayscale, histogram ditampilkan hanya pada satu kanal warna berderajat keabuan. Sedangkan pada citra biner, histogram ditampilkan hanya pada satu kanal warna hitam dan putih.
Tampilan GUI Matlab untuk menampilkan citra digital dan histogramnya adalah sebagai berikut:
1. Citra RGB dan Histogramnya
-read more->