Blog Archives

Ekstraksi Ciri Bentuk dan Ukuran


Ciri yang dapat diekstrak dari suatu objek dalam citra antara lain adalah warna, bentuk, ukuran, dan tekstur. Ciri tersebut digunakan sebagai parameter untuk membedakan antara objek satu dengan objek yang lain.

Berikut ini merupakan contoh pengolahan citra digital untuk melakukan proses ekstraksi ciri bentuk dan ukuran pada citra RGB. Parameter yang digunakan untuk mewakili ciri bentuk adalah metric dan eccentricity, sedangkan parameter yang mewakili ciri ukuran adalah luas dan keliling.

Materi mengenai definisi masing-masing parameter ciri bentuk dan ukuran dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all; warning off all;
 
I = imread('fruits.jpg');
figure, imshow(I);

-read more->

Jaringan Syaraf Tiruan untuk Memprediksi Jumlah Penduduk


Salah satu penerapan algoritma jaringan syaraf tiruan adalah untuk sistem prediksi (forecasting). Prediksi dapat dilakukan dalam bentuk urutan waktu (time series) atau dapat pula dilakukan dalam bentuk bukan urutan waktu.

Dalam sistem prediksi urutan waktu, data masukan adalah berupa beberapa data dalam kurun waktu tertentu, sedangkan data keluarannya adalah data pada kurun waktu berikutnya. Pada sistem prediksi ini data keluaran diasumsikan hanya dipengaruhi oleh data-data sebelumnya.

Contoh sistem prediksi urutan waktu:

sistem untuk memprediksi jumlah penduduk pada bulan tertentu di mana data masukannya adalah jumlah penduduk pada 12 bulan sebelumnya.

Untuk sistem prediksi bukan urutan waktu, data masukannya adalah berupa beberapa variabel data yang mempengaruhi nilai data keluaran, sedangkan data keluarannya adalah berupa data pada kurun waktu berikutnya. Pada sistem prediksi ini variabel-variabel yang mempengaruhi nilai data keluaran diikutsertakan untuk melakukan prediksi.

Contoh sistem prediksi bukan urutan waktu:

sistem untuk memprediksi jumlah penduduk pada bulan tertentu di mana data masukannya adalah jumlah penduduk pada 1 bulan sebelumnya, tingkat kesejahteraan penduduk, tingkat keamanan lingkungan, faktor politik, dan faktor-faktor demografi lainnya pada 1 bulan sebelumnya.

-read more->

Pengolahan Citra Digital


Pengolahan Citra Digital (Digital Image Processing) merupakan bidang ilmu yang mempelajari tentang bagaimana suatu citra itu dibentuk, diolah, dan dianalisis sehingga menghasilkan informasi yang dapat dipahami oleh manusia.

Sebelum mempelajari lebih lanjut mengenai pengolahan citra digital, kita perlu mengetahui definisi dari citra itu terlebih dahulu.

Citra merupakan fungsi dari intensitas cahaya yang direpresentasikan dalam bidang dua dimensi.

Berdasarkan bentuk sinyal penyusunnya, citra dapat digolongkan menjadi dua jenis yaitu citra analog dan citra digital. Citra analog adalah citra yang dibentuk dari sinyal analog yang bersifat kontinyu, sedangkan citra digital adalah citra yang dibentuk dari sinyal digital yang bersifat diskrit.

Citra analog dihasilkan dari alat akuisisi citra analog, contohnya adalah mata manusia dan kamera analog. Gambaran yang tertangkap oleh mata manusia dan foto atau film yang tertangkap oleh kamera analog merupakan contoh dari citra analog. Citra tersebut memiliki kualitas dengan tingkat kerincian (resolusi) yang sangat baik tetapi memiliki kelemahan di antaranya adalah tidak dapat disimpan, diolah, dan diduplikasi di dalam komputer.

-read more->

Ekstraksi Ciri Citra Grayscale


Ekstraksi ciri merupakan tahapan yang sangat penting dalam pengenalan pola. Tahapan ini bertujuan untuk memperoleh informasi yang terkandung dalam suatu citra untuk kemudian dijadikan sebagai acuan untuk membedakan antara citra yang satu dengan citra yang lain.

Ekstraksi ciri dapat dilakukan setelah tahapan segmentasi citra (memisahkan antara objek dengan background) maupun tanpa segmentasi citra (objek adalah background dan background adalah objek).

Berikut ini merupakan contoh pemrograman matlab untuk melakukan ekstraksi ciri citra grayscale baik yang didahului dengan tahapan segmentasi maupun tidak.

Langkah-langkah pemrogramannya yaitu:

A. Ekstraksi ciri didahului dengan segmentasi

1. Membaca dan menampilkan citra RGB asli

clc; clear; close all; warning off all;
I = imread('candy.png');
figure, imshow(I);

candy

-read more->

Pengolahan Citra untuk Ekstraksi Ciri Objek


Ekstraksi ciri citra merupakan tahapan mengekstrak ciri atau informasi yang dimiliki oleh suatu objek dalam citra. Ciri atau informasi tersebut dapat digunakan untuk membedakan antara objek yang satu dengan objek lainnya.

Ekstraksi ciri citra merupakan tahapan yang sangat penting dalam sebuah sistem visi komputer. Tahapan ini menentukan baik tidaknya tingkat pengenalan objek yang dilakukan oleh komputer.

Dalam pemilihan ciri hendaknya memperhatikan hal-hal sebagai berikut:

  1. Secara visual, ciri apakah yang membedakan antara objek satu dengan lainnya. Apakah bentuknya, warnanya, teksturnya, ukurannya, atau geometrinya.
  2. Parameter apakah yang mewakili ciri tersebut. Misalnya secara visual antara objek satu dengan lainnya tampak berbeda ukurannya, maka parameter yang dapat digunakan untuk mengenali objek adalah luas.
  3. Menentukan jumlah parameter yang akan digunakan. Semakin banyak parameter pada umumnya tingkat pengenalan semakin baik. Namun harus dipastikan bahwa parameter-parameter yang digunakan benar-benar dapat membedakan antar objek.

Ciri yang diekstrak dalam tahapan ekstraksi ciri kemudian digunakan sebagai masukan dalam tahapan klasifikasi objek. Tahapan klasifikasi dapat menggunakan berbagai jenis algoritma ataupun dapat juga menggunakan aturan if else sederhana.

Berikut ini merupakan contoh pemrograman komputer menggunakan bahasa pemrograman MATLAB untuk melakukan ekstraksi ciri objek dalam citra digital. Citra yang digunakan adalah citra sand play set.jpg yang ditunjukkan pada gambar di bawah ini:

-read more->

%d bloggers like this: