Blog Archives

Klasifikasi Jenis Sayuran Menggunakan Algoritma PCA dan KNN


Apakah yang dimaksud dengan Principal Component Analysis (PCA)??

Principal Component Analysis (PCA) merupakan suatu algoritma yang mampu mengkonversi sekelompok data yang pada awalnya saling berkorelasi menjadi data yang tidak saling berkorelasi (Principal Component). Jumlah Principal Component yang dihasilkan adalah sama dengan jumlah data aslinya, tetapi dapat direduksi dengan jumlah yang lebih kecil dan tetap mampu merepresentasikan data asli dengan baik.

Berikut ini merupakan contoh pemrograman matlab untuk klasifikasi jenis sayuran menggunakan algoritma PCA dan KNN. Jenis sayuran yang akan diklasifikasi adalah sayur kol, sawi, dan wortel. Ketiga jenis sayur tersebut dibedakan berdasarkan ciri warna dan ukurannya. Contoh citra sayuran pada masing-masing kelas ditunjukkan pada gambar di bawah ini.

-read more->

Jaringan Syaraf Tiruan untuk Klasifikasi Citra Daun


Salah satu penerapan dari algoritma jaringan syaraf tiruan adalah untuk proses klasifikasi citra. Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan klasifikasi terhadap citra daun. Citra daun dikelompokkan ke dalam 4 kelas spesies yaitu Bougainvillea sp, Geranium sp, Magnolia soulangeana, dan Pinus sp. Pada contoh ini digunakan 40 citra daun yang terdiri dari 10 citra pada masing-masing kelas. Contoh dari citra daun yang digunakan ditunjukkan pada gambar di bawah ini:

Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Mempersiapkan citra latih dan citra uji. Pada contoh ini 40 citra daun dibagi menjadi dua bagian yaitu 24 citra untuk citra latih dan 16 citra untuk citra uji.

-read more->

%d bloggers like this: