Blog Archives

Metode Ekstraksi Fitur Dalam Pengolahan Citra


Pada era digital saat ini, pengolahan citra telah menjadi bidang yang semakin penting dalam berbagai aplikasi, termasuk pengenalan pola, deteksi objek, komputer vision, dan banyak lagi. Salah satu aspek penting dalam pengolahan citra adalah ekstraksi fitur, di mana informasi yang relevan diekstraksi dari citra untuk tujuan analisis lebih lanjut. Dalam artikel ini, kita akan mempelajari metode-metode ekstraksi fitur citra, mulai dari pendekatan sederhana hingga teknik-teknik kompleks yang digunakan dalam penelitian terkini.

Ekstraksi Fitur / Ekstraksi Ciri Citra

Ekstraksi fitur citra adalah proses mengubah data citra menjadi representasi fitur yang lebih sederhana dan informatif. Fitur-fitur ini mencerminkan karakteristik penting dari citra yang dapat digunakan untuk mengidentifikasi pola, membedakan objek, atau mengklasifikasikan citra. Dalam banyak aplikasi, ekstraksi fitur merupakan langkah awal yang penting sebelum analisis lebih lanjut, seperti pengenalan pola atau deteksi objek.

-read more->

Kompresi Citra Digital Menggunakan Transformasi Wavelet


Transformasi wavelet adalah teknik matematika yang digunakan untuk menganalisis dan merepresentasikan data dalam domain frekuensi dan waktu secara bersamaan. Berikut adalah beberapa poin penting tentang transformasi wavelet:

  • Wavelet: Wavelet adalah fungsi matematika yang digunakan dalam transformasi wavelet. Fungsi ini memiliki sifat lokal dan dapat merepresentasikan perubahan dalam waktu dan frekuensi. Beberapa jenis wavelet yang umum digunakan termasuk Haar, Daubechies, Symlets, dan Coiflets.
  • Multi-resolusi: Transformasi wavelet memungkinkan analisis data dalam berbagai resolusi. Dengan menggunakan skala yang berbeda, transformasi wavelet dapat mengungkapkan detail halus dan kasar dalam data.
  • Dekomposisi: Transformasi wavelet dapat memecah data menjadi komponen frekuensi yang berbeda. Proses ini melibatkan dekomposisi data menjadi aproksimasi (komponen rendah frekuensi) dan detail (komponen tinggi frekuensi) menggunakan filter wavelet.
  • Rekonstruksi: Rekonstruksi adalah proses menggabungkan komponen frekuensi yang telah dipecah menjadi bentuk aslinya menggunakan filter wavelet yang berlawanan.
  • Aplikasi: Transformasi wavelet memiliki berbagai aplikasi dalam pengolahan sinyal dan citra, termasuk kompresi citra, pengenalan pola, denoising, deteksi tepi, dan analisis data time series.
-read more->

Watermarking Citra Menggunakan Transformasi Wavelet


Dalam era digital saat ini, citra memiliki peranan penting dalam berbagai bidang, termasuk seni, ilmu pengetahuan, dan bisnis. Dengan kemajuan teknologi yang semakin pesat, perlindungan terhadap citra digital menjadi hal yang esensial untuk menghindari penggunaan ilegal, manipulasi, atau pencurian citra. Salah satu cara efektif untuk melakukannya adalah dengan menggunakan teknik watermarking citra menggunakan transformasi wavelet. Artikel ini akan membahas konsep, keuntungan, langkah-langkah, dan penerapan watermarking citra dengan menggunakan transformasi wavelet.

-read more->

Pengolahan Citra Digital Menggunakan Transformasi Wavelet


Perbedaan transformasi fourier dengan transformasi wavelet??

Pada bidang pengolahan sinyal digital, kita dapat menggunakan transformasi Fourier untuk memperoleh informasi berapa besar frekuensi dari sebuah sinyal, tetapi kita tidak dapat mengetahui informasi kapan frekuensi itu terjadi. Transformasi Fourier hanya cocok untuk sinyal stasioner (sinyal yang frekuensinya tidak berubah terhadap waktu). Untuk mengatasi hal tersebut maka kita dapat menggunakan transformasi Wavelet yang mampu merepresentasikan informasi waktu dan frekuensi suatu sinyal dengan baik.

Penerapan transformasi wavelet pada bidang pengolahan citra digital antara lain adalah untuk kompresi, filtering, dan analisis tekstur. Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan transformasi wavelet. Pemrograman meliputi proses transformasi terhadap citra grayscale ke dalam empat buah koefisien yaitu koefisien aproksimasi, koefisien detail vertikal, koefisien detail horizontal, dan koefisien detail diagonal.

1. Dekomposisi citra menggunakan wavelet haar level 1 (ukuran citra menjadi 1/2 kali ukuran semula)

clc; clear; close all;

% membaca citra grayscale
Img = imread('lena_gray_512.tif');

% dekomposisi wavelet haar level 1
[c,s] = wavedec2(Img,2,'haar');
[H1,V1,D1] = detcoef2('all',c,s,1);
A1 = appcoef2(c,s,'haar',1);
V1img = wcodemat(V1,255,'mat',1);
H1img = wcodemat(H1,255,'mat',1);
D1img = wcodemat(D1,255,'mat',1);
A1img = wcodemat(A1,255,'mat',1);

figure;
subplot(2,2,1);
imagesc(A1img);
colormap gray;
title('Approximation Coef. of Level 1');

subplot(2,2,2);
imagesc(H1img);
title('Horizontal detail Coef. of Level 1');

subplot(2,2,3);
imagesc(V1img);
title('Vertical detail Coef. of Level 1');

subplot(2,2,4);
imagesc(D1img);
title('Diagonal detail Coef. of Level 1');

-read more->