Author Archives: adi pamungkas

Akuisisi Sinyal Suara Menggunakan MATLAB


Sinyal suara (audio signal) merupakan sinyal yang dihasilkan oleh gelombang audiosonik (gelombang bunyi yang memiliki frekuensi antara 20 Hz sampai 20000 Hz).

Penerapan pengolahan sinyal suara antara lain adalah sistem pengenalan suara manusia, deteksi bunyi kerusakan mesin, deteksi kelainan detak jantung, dan lain-lain.

Berikut ini merupakan contoh pemrograman GUI matlab untuk melakukan akuisisi sinyal suara. Proses akuisisi dilakukan dengan cara merekam suara menggunakan mikrofon yang ada pada komputer atau laptop.

Langkah-langkah pemrogramannya yaitu:
1. Membuat interface GUI dengan desain tampilan seperti pada gambar di bawah ini

-read more->

Contrast Stretching dan Histogram Equalization


Perbaikan kualitas citra (Image Enhancement) merupakan tahapan pre-processing yang umumnya dilakukan sebelum tahapan segmentasi. Dalam materi ini dibahas dua jenis perbaikan kualitas citra yaitu contrast stretching dan histogram equalization. Contrast stretching merupakan metode perbaikan kualitas citra yang bertujuan untuk meningkatkan atau menurunkan kontras suatu citra dengan cara memperlebar atau mempersempit range nilai intensitas piksel citra. Materi mengenai perbedaan kontras tinggi dan rendah dapat dilihat pada halaman berikut ini: Perbedaan citra gelap, terang, kontras rendah, dan kontras tinggi. Sedangkan histogram equalization merupakan metode perbaikan kualitas citra yang bertujuan untuk meratakan persebaran nilai intensitas piksel suatu citra. Materi mengenai histogram equalization lebih lanjut dapat dilihat pada halaman berikut ini: Ekualisasi Histogram pada Citra Digital

Pada materi ini menggunakan nilai PSNR dan MSE sebagai indikator perbandingan citra hasil perbaikan kualitas citra dengan citra asli.

Langkah-langkah pemrograman GUI matlab untuk melakukan contrast stretching dan histogram equalization pada citra digital adalah sebagai berikut:

1. Membuka tampilan GUI awal

-read more->

Pengenalan Warna Objek


Komponen Hue dari citra HSV (Hue, Saturation, Value) merupakan suatu komponen yang merepresentasikan warna dari panjang gelombang cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Oleh karena itu, komponen ini dapat digunakan sebagai acuan untuk melakukan pengenalan warna suatu objek pada citra digital.

Berikut ini merupakan pengolahan citra digital untuk melakukan pengenalan warna suatu objek berdasarkan komponen Hue.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('stabilo.jpg');
figure, imshow(I);

-read more->

Mendeteksi Objek yang Berbentuk Lingkaran


Bentuk merupakan salah satu ciri yang dapat diekstrak dari suatu objek. Ciri ini dapat digunakan untuk membedakan antara objek yang satu dengan lainnya. Berikut ini merupakan contoh pengolahan citra untuk mendeteksi objek yang berbentuk lingkaran. Salah satu parameter yang dapat digunakan untuk mendefinisikan bentuk lingkaran adalah metric. Metric merupakan perbandingan antara luas dan keliling suatu objek. Nilai metric berkisar antara 0 s.d 1. Objek yang berbentuk lingkaran, nilai metric nya mendekati angka satu. Materi lebih lanjut mengenai nilai metric dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan untuk mendeteksi objek yang berbentuk lingkaran adalah:

1. Membaca citra RGB asli

clc; clear; close all;
I = imread('shape object.jpg');
figure, imshow(I);

-read more->

Ekstraksi Ciri Bentuk dan Ukuran


Ciri yang dapat diekstrak dari suatu objek dalam citra antara lain adalah warna, bentuk, ukuran, dan tekstur. Ciri tersebut digunakan sebagai parameter untuk membedakan antara objek satu dengan objek yang lain.

Berikut ini merupakan contoh pengolahan citra digital untuk melakukan proses ekstraksi ciri bentuk dan ukuran pada citra RGB. Parameter yang digunakan untuk mewakili ciri bentuk adalah metric dan eccentricity, sedangkan parameter yang mewakili ciri ukuran adalah luas dan keliling.

Materi mengenai definisi masing-masing parameter ciri bentuk dan ukuran dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all; warning off all;
 
I = imread('fruits.jpg');
figure, imshow(I);

-read more->

Ekstraksi Ciri Nilai RGB


Ekstraksi ciri merupakan tahapan mengekstrak informasi yang terkandung dalam suatu objek dalam citra digital. Informasi tersebut digunakan untuk membedakan antara objek yang satu dengan objek lainnya pada tahapan pengenalan atau identifikasi citra.

Berikut ini merupakan contoh pengolahan citra untuk melakukan proses ekstraksi ciri warna berdasarkan nilai rata-rata RGB pada masing-masing objek yang tersegmentasi.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('balls.jpg');
figure, imshow(I);

-read more->

Jaringan Syaraf Tiruan untuk Memprediksi Jumlah Penduduk


Salah satu penerapan algoritma jaringan syaraf tiruan adalah untuk sistem prediksi (forecasting). Prediksi dapat dilakukan dalam bentuk urutan waktu (time series) atau dapat pula dilakukan dalam bentuk bukan urutan waktu.

Dalam sistem prediksi urutan waktu, data masukan adalah berupa beberapa data dalam kurun waktu tertentu, sedangkan data keluarannya adalah data pada kurun waktu berikutnya. Pada sistem prediksi ini data keluaran diasumsikan hanya dipengaruhi oleh data-data sebelumnya.

Contoh sistem prediksi urutan waktu:

sistem untuk memprediksi jumlah penduduk pada bulan tertentu di mana data masukannya adalah jumlah penduduk pada 12 bulan sebelumnya.

Untuk sistem prediksi bukan urutan waktu, data masukannya adalah berupa beberapa variabel data yang mempengaruhi nilai data keluaran, sedangkan data keluarannya adalah berupa data pada kurun waktu berikutnya. Pada sistem prediksi ini variabel-variabel yang mempengaruhi nilai data keluaran diikutsertakan untuk melakukan prediksi.

Contoh sistem prediksi bukan urutan waktu:

sistem untuk memprediksi jumlah penduduk pada bulan tertentu di mana data masukannya adalah jumlah penduduk pada 1 bulan sebelumnya, tingkat kesejahteraan penduduk, tingkat keamanan lingkungan, faktor politik, dan faktor-faktor demografi lainnya pada 1 bulan sebelumnya.

-read more->

Multi-Level Thresholding


Multi-level thresholding merupakan metode segmentasi citra thresholding yang menggunakan dua atau lebih nilai threshold. Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode multi-level thresholding adalah:

di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T1 adalah nilai threshold bawah
T2 adalah nilai threshold atas

Ilustrasi perubahan nilai piksel pada proses multi-level thresholding ditunjukkan pada gambar di bawah ini

-read more->

Histogram Citra


Histogram citra merupakan diagram yang menggambarkan distribusi frekuensi nilai intensitas piksel dalam suatu citra. Sumbu horizontal merupakan nilai intensitas piksel sedangkan sumbu vertikal merupakan frekuensi/jumlah piksel. Histogram dari sebuah citra ditunjukkan pada Gambar 1.

Gambar 1. Citra dan histogram

Berikut ini merupakan contoh karakteristik citra grayscale berdasarkan distribusi histogramnya.

a. Citra Gelap
Citra gelap merupakan citra yang memiliki banyak piksel dengan nilai intensitas mendekati 0. Distribusi nilai intensitas citra gelap cenderung berada pada daerah sebelah kiri histogram. Contoh citra gelap dan histogramnya ditunjukkan pada Gambar 2.

-read more->

Thresholding


Thresholding merupakan salah satu metode segmentasi citra di mana prosesnya didasarkan pada perbedaan derajat keabuan citra.

Dalam proses ini dibutuhkan suatu nilai batas yang disebut dengan nilai threshold.

Nilai intensitas citra yang lebih dari atau sama dengan nilai threshold akan diubah menjadi 1 (berwarna putih) sedangkan nilai intensitas citra yang kurang dari nilai threshold akan diubah menjadi 0 (berwana hitam). Sehingga citra keluaran dari hasil thresholding adalah berupa citra biner.

Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode thresholding adalah:

di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T adalah nilai threshold

-read more->

%d bloggers like this: