Blog Archives

Pengenalan Warna Objek


Komponen Hue dari citra HSV (Hue, Saturation, Value) merupakan suatu komponen yang merepresentasikan warna dari panjang gelombang cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Oleh karena itu, komponen ini dapat digunakan sebagai acuan untuk melakukan pengenalan warna suatu objek pada citra digital.

Berikut ini merupakan pengolahan citra digital untuk melakukan pengenalan warna suatu objek berdasarkan komponen Hue.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('stabilo.jpg');
figure, imshow(I);

-read more->

Mendeteksi Objek yang Berbentuk Lingkaran


Bentuk merupakan salah satu ciri yang dapat diekstrak dari suatu objek. Ciri ini dapat digunakan untuk membedakan antara objek yang satu dengan lainnya. Berikut ini merupakan contoh pengolahan citra untuk mendeteksi objek yang berbentuk lingkaran. Salah satu parameter yang dapat digunakan untuk mendefinisikan bentuk lingkaran adalah metric. Metric merupakan perbandingan antara luas dan keliling suatu objek. Nilai metric berkisar antara 0 s.d 1. Objek yang berbentuk lingkaran, nilai metric nya mendekati angka satu. Materi lebih lanjut mengenai nilai metric dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan untuk mendeteksi objek yang berbentuk lingkaran adalah:

1. Membaca citra RGB asli

clc; clear; close all;
I = imread('shape object.jpg');
figure, imshow(I);

-read more->

Ekstraksi Ciri Bentuk dan Ukuran


Ciri yang dapat diekstrak dari suatu objek dalam citra antara lain adalah warna, bentuk, ukuran, dan tekstur. Ciri tersebut digunakan sebagai parameter untuk membedakan antara objek satu dengan objek yang lain.

Berikut ini merupakan contoh pengolahan citra digital untuk melakukan proses ekstraksi ciri bentuk dan ukuran pada citra RGB. Parameter yang digunakan untuk mewakili ciri bentuk adalah metric dan eccentricity, sedangkan parameter yang mewakili ciri ukuran adalah luas dan keliling.

Materi mengenai definisi masing-masing parameter ciri bentuk dan ukuran dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all; warning off all;
 
I = imread('fruits.jpg');
figure, imshow(I);

-read more->

Ekstraksi Ciri Nilai RGB


Ekstraksi ciri merupakan tahapan mengekstrak informasi yang terkandung dalam suatu objek dalam citra digital. Informasi tersebut digunakan untuk membedakan antara objek yang satu dengan objek lainnya pada tahapan pengenalan atau identifikasi citra.

Berikut ini merupakan contoh pengolahan citra untuk melakukan proses ekstraksi ciri warna berdasarkan nilai rata-rata RGB pada masing-masing objek yang tersegmentasi.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('balls.jpg');
figure, imshow(I);

-read more->

Multi-Level Thresholding


Multi-level thresholding merupakan metode segmentasi citra thresholding yang menggunakan dua atau lebih nilai threshold. Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode multi-level thresholding adalah:

di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T1 adalah nilai threshold bawah
T2 adalah nilai threshold atas

Ilustrasi perubahan nilai piksel pada proses multi-level thresholding ditunjukkan pada gambar di bawah ini

-read more->

Histogram Citra


Histogram citra merupakan diagram yang menggambarkan distribusi frekuensi nilai intensitas piksel dalam suatu citra. Sumbu horizontal merupakan nilai intensitas piksel sedangkan sumbu vertikal merupakan frekuensi/jumlah piksel. Histogram dari sebuah citra ditunjukkan pada Gambar 1.

Gambar 1. Citra dan histogram

Berikut ini merupakan contoh karakteristik citra grayscale berdasarkan distribusi histogramnya.

a. Citra Gelap
Citra gelap merupakan citra yang memiliki banyak piksel dengan nilai intensitas mendekati 0. Distribusi nilai intensitas citra gelap cenderung berada pada daerah sebelah kiri histogram. Contoh citra gelap dan histogramnya ditunjukkan pada Gambar 2.

-read more->

Pengolahan Citra Digital


Pengolahan Citra Digital (Digital Image Processing) merupakan bidang ilmu yang mempelajari tentang bagaimana suatu citra itu dibentuk, diolah, dan dianalisis sehingga menghasilkan informasi yang dapat dipahami oleh manusia.

Sebelum mempelajari lebih lanjut mengenai pengolahan citra digital, kita perlu mengetahui definisi dari citra itu terlebih dahulu.

Citra merupakan fungsi dari intensitas cahaya yang direpresentasikan dalam bidang dua dimensi.

Berdasarkan bentuk sinyal penyusunnya, citra dapat digolongkan menjadi dua jenis yaitu citra analog dan citra digital. Citra analog adalah citra yang dibentuk dari sinyal analog yang bersifat kontinyu, sedangkan citra digital adalah citra yang dibentuk dari sinyal digital yang bersifat diskrit.

Citra analog dihasilkan dari alat akuisisi citra analog, contohnya adalah mata manusia dan kamera analog. Gambaran yang tertangkap oleh mata manusia dan foto atau film yang tertangkap oleh kamera analog merupakan contoh dari citra analog. Citra tersebut memiliki kualitas dengan tingkat kerincian (resolusi) yang sangat baik tetapi memiliki kelemahan di antaranya adalah tidak dapat disimpan, diolah, dan diduplikasi di dalam komputer.

-read more->

Segmentasi Pola Tekstur menggunakan Filter Gabor


Kemampuan sistem visual manusia dalam membedakan pola tekstur didasarkan pada kapabilitas dalam mengidentifikasikan berbagai frekuensi dan orientasi spasial dari tekstur yang diamati.

Filter Gabor merupakan salah satu filter yang mampu mensimulasikan karakteristik sistem visual manusia dalam mengisolasi frekuensi dan orientasi tertentu dari citra.

Karakteristik ini membuat filter Gabor sesuai untuk aplikasi pengenalan tekstur dalam bidang computer vision.

Berikut ini merupakan pemrograman matlab untuk melakukan segmentasi pola tekstur dari suatu citra menggunakan filter Gabor. Koding dapat dijalankan minimal menggunakan Matlab R2015b.

Langkah-langkah pemrogramannya yaitu:
1. Membaca dan menampilkan citra asli

clc;clear;close all;

% Read the image
I = imread('metal texture.jpg');
figure,imshow(I);
title('Original Image');

sehingga diperoleh tampilan

-read more->

Segmentasi Warna menggunakan Algoritma Fuzzy C-Means Clustering


Fuzzy c-means clustering merupakan algoritma klustering yang mempartisi data berdasarkan pada jarak antara data masukan dengan pusat kluster terdekat. Sama seperti pada algoritma k-means clustering, pusat cluster selalu diupdate berulang-ulang hingga dihasilkan pembagian kluster yang optimal. Pada algoritma ini, perulangan didasarkan pada minimisasi fungsi objektif.

Berikut ini merupakan contoh pemrograman matlab untuk melakukan segmentasi warna suatu citra digital menggunakan algoritma fuzzy c-means clustering. Citra yang digunakan adalah citra sky-grass.jpg yang memuat dua buah objek yaitu langit dan rumput seperti ditunjukkan pada gambar di bawah ini.

-read more->

Pengolahan Citra untuk Deteksi Warna Kulit (Skin Detection)


Deteksi warna kulit (skin color detection) merupakan salah satu proses segmentasi yang memisahkan region objek dalam citra berdasarkan pada perbedaan warna. Objek yang memiliki warna tertentu dipisahkan dengan objek yang memiliki warna lainnya. Hasil segmentasi dapat digunakan untuk proses selanjutnya seperti ekstraksi ciri atau klasifikasi citra. Pada contoh ini, warna kulit didefiniskan dalam ruang warna  YCbCr dengan nilai Cb antara 77 s.d 127 dan nilai Cr antara 133 s.d 173.

Deteksi warna kulit merupakan salah satu tahapan awal dalam computer vision untuk mendeteksi hal-hal yang berkaitan dengan manusia (people detection). Deteksi warna kulit dapat dijadikan sebagai metode segmentasi  untuk pengenalan wajah (face recognition) maupun pengenalan organ tubuh lainnya. Sistem tersebut dapat dikembangkan lebih lanjut untuk sistem biometrik.

Langkah-langkah proses segmentasi warna kulit adalah sebagai berikut:
1. Melakukan penyeimbangan warna RGB (Color Balanced 24-bit RGB Image)
2. Melakukan transformasi ruang warna RGB menjadi YCbCr
3. Melakukan segmentasi warna kulit berdasarkan nilai Cb antara 77 s.d 127 dan nilai Cr antara 133 s.d 173
4. Menampilkan hasil segmentasi

Hasil segmentasi ditunjukkan pada gambar berikut:

No                     Citra Asli      Hasil Deteksi Warna Kulit
1
2
3
4

-read more->

%d bloggers like this: