Category Archives: Pengolahan Citra
Pengolahan Citra Digital menggunakan GUI MATLAB
Steganografi dengan Metode Substitusi LSB (Least Significant Bit)
Steganografi merupakan suatu teknik menyembunyikan sebuah file pada file lainnya. Dalam metode ini diperlukan file sebagai penampung (cover) dan file lain yang akan ditampung (message). File penampung maupun file yang akan ditampung dapat berupa citra, audio, maupun text.
Penggunaan steganografi bertujuan untuk menyembunyikan atau menyamarkan suatu data sehingga sulit untuk dideteksi (encoding). Data yang disembunyikan dapat diekstraksi kembali sama seperti keadaan aslinya (decoding).
Berikut ini merupakan contoh pemrograman matlab mengenai steganografi dengan metode substitusi LSB (Least Significant Bit) di mana file penampung berupa citra digital sedangkan file yang akan ditampung berupa text.
Langkah-langkah pemrogramannya adalah sebagai berikut:
Segmentasi Citra Bakteri Tuberkulosis Menggunakan K-Means Clustering
TBC (Tuberkulosis) yang juga dikenal dengan TB adalah penyakit paru-paru akibat adanya bakteri Mycobacterium tuberculosis pada paru-paru, tulang, usus, atau kelenjar. Salah satu teknik untuk mendeteksi ada tidaknya penyakit tuberkulosis adalah dengan melalui pemeriksaan dahak secara mikroskopis.
Berikut ini merupakan contoh pemrograman matlab untuk melakukan segmentasi citra dahak yang terinfeksi bakteri tuberkulosis menggunakan algoritma k-means clustering.
Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Membaca citra RGB
Deteksi Iris Mata dengan Daugman’s Integrodifferential Operator
Setiap manusia memiliki pola iris mata yang berbeda-beda, keunikan iris mata ini mampu membedakan masing-masing individu sehingga dapat digunakan sebagai acuan dalam membangun sistem pengenalan biometrik. Pengenalan melalui iris mata ini banyak diterapkan dalam berbagai bidang kehidupan seperti pada bidang kesehatan, keamanan, industri, pendidikan, dan lain sebagainya.
Daugman’s Integrodifferential Operator menggunakan fungsi persamaan integral dan turunan dalam mencari koordinat titik pusat dan jari-jari iris mata. Berikut ini merupakan contoh pemrograman matlab menggunakan Daugman’s Integrodifferential Operator untuk mendeteksi iris mata manusia.
Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Membaca citra iris mata
% membaca citra iris mata Img = imread('iris 01.jpg'); figure, imshow(Img); title('Citra Asli')
Segmentasi Citra Menggunakan Algoritma Klasifikasi
Segmentasi citra merupakan suatu tahapan untuk mengelompokkan region-region di dalam suatu citra. Pengelompokan tersebut dilakukan agar dapat dilakukan analisis pada region tertentu saja.
Berikut ini merupakan contoh aplikasi pengolahan citra untuk melakukan segmentasi citra menggunakan algoritma klasifikasi. Citra yang digunakan adalah citra ‘plage de carataggio tahiti beach.jpg’ yang akan dikelompokkan dalam 3 kelas region yaitu region laut, region pepohonan, dan region pasir. Algoritma klasifikasi yang digunakan antara lain adalah random forest, k-nearest neighbors, naive bayes, dan decision tree (pohon keputusan).
Langkah-langkah pengolahan citranya adalah sebagai berikut:
1. Membaca citra rgb dan memperkecil ukuran citra
clc; clear; close all; warning off all; % membaca citra rgb Img = imread('plage de carataggio tahiti beach.jpg'); % memperkecil ukuran citra 0,5x semula untuk mempercepat komputasi Img = imresize(Img,0.5); figure, imshow(Img), title('Citra RGB');

Identifikasi Nilai Uang Logam Menggunakan Metode Otsu Thresholding
Berikut ini merupakan contoh aplikasi pengolahan citra untuk melakukan identifikasi nilai uang logam menggunakan metode otsu thresholding. Uang logam yang diidentifikasi nilainya adalah uang logam Rp. 100, Rp. 200, Rp. 500, dan Rp. 1000. Langkah-langkah pengolahan citra yang dilakukan antara lain adalah sebagai berikut:
1. Membaca citra rgb asli
clc; clear; close all; warning off all; % membaca citra rgb Img = imread('koin 01.jpg'); figure, imshow(Img);
Klasifikasi Jenis Kendaraan Menggunakan Algoritma Extreme Learning Machine
Extreme Learning Machine (ELM) merupakan jenis jaringan syaraf tiruan dengan satu lapisan tersembunyi yang biasa disebut dengan single hidden layer feedforward neural network (SLNs). Metode ini memiliki kecepatan pembelajaran yang lebih cepat dibandingkan metode jaringan syaraf tiruan konvensional seperti backpropagation.
Contoh arsitektur jaringan syaraf tiruan Extreme Learning Machine ditunjukkan pada gambar di bawah ini
Klasifikasi Jenis Buah Menggunakan Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) merupakan salah satu metode yang digunakan untuk mengelompokkan data ke dalam beberapa kelas. Penentuan pengelompokan didasarkan pada garis batas (garis lurus) yang diperoleh dari persamaan linear.
Berikut ini merupakan contoh aplikasi pengolahan citra untuk mengklasifikasikan jenis buah menggunakan linear discriminant analysis. Jenis buah yang diklasifikasikan adalah buah apel dan buah jeruk. Kedua jenis buah tersebut dibedakan berdasarkan ciri warnanya menggunakan nilai hue dan saturation. Contoh citra buah pada masing-masing kelas ditunjukkan pada gambar di bawah ini.

Steganografi Citra Digital
Apakah yang dimaksud dengan steganografi??
Steganografi merupakan suatu teknik menyembunyikan sebuah file pada file lainnya. Dalam metode ini diperlukan file sebagai penampung (cover) dan file lain yang akan ditampung (message). File penampung maupun file yang akan ditampung dapat berupa citra, audio, maupun text.
Penggunaan steganografi bertujuan untuk menyembunyikan atau menyamarkan suatu data sehingga sulit untuk dideteksi (encoding). Data yang disembunyikan dapat diekstraksi kembali sama seperti keadaan aslinya (decoding).
Berikut ini merupakan contoh pemrograman matlab mengenai steganografi dengan metode substitusi LSB (Least Significant Bit) di mana baik file penampung maupun file yang akan ditampung adalah berupa citra digital.
Langkah-langkah pemrogramannya adalah sebagai berikut:
Klasifikasi Jenis Sayuran Menggunakan Algoritma PCA dan KNN
Apakah yang dimaksud dengan Principal Component Analysis (PCA)??
Principal Component Analysis (PCA) merupakan suatu algoritma yang mampu mengkonversi sekelompok data yang pada awalnya saling berkorelasi menjadi data yang tidak saling berkorelasi (Principal Component). Jumlah Principal Component yang dihasilkan adalah sama dengan jumlah data aslinya, tetapi dapat direduksi dengan jumlah yang lebih kecil dan tetap mampu merepresentasikan data asli dengan baik.
Berikut ini merupakan contoh pemrograman matlab untuk klasifikasi jenis sayuran menggunakan algoritma PCA dan KNN. Jenis sayuran yang akan diklasifikasi adalah sayur kol, sawi, dan wortel. Ketiga jenis sayur tersebut dibedakan berdasarkan ciri warna dan ukurannya. Contoh citra sayuran pada masing-masing kelas ditunjukkan pada gambar di bawah ini.