Category Archives: Pengenalan Pola

Pengenalan Pola menggunakan MATLAB

Deteksi Lingkaran Menggunakan Transformasi Hough


Transformasi Hough merupakan salah satu metode yang dapat digunakan untuk mendeteksi garis dan lingkaran pada suatu citra digital. Transformasi Hough bekerja dengan cara mencari hubungan ketetanggan antar piksel menggunakan persamaan garis lurus untuk mendeteksi garis dan persamaan lingkaran untuk mendeteksi lingkaran. Berikut ini merupakan contoh pemrograman matlab untuk melakukan deteksi lingkaran pada citra digital menggunakan Transformasi Hough. Sedangkan materi mengenai deteksi garis menggunakan transformasi hough dapat dilihat pada halaman berikut: Deteksi Titik Sudut Citra Untuk Identifikasi Bentuk

Pemrograman yang dilakukan merupakan modifikasi source code yang sebelumnya telah dikembangkan oleh David Young. Modifikasi dilakukan pada pengolahan akhir citra hasil deteksi sehingga objek dapat dipisahkan dengan background dan dapat dihitung luas dan kelilingnya.

Langkah-langkah pemrogramannya adalah sebagai berikut:

1. Membaca citra RGB

clc; clear; close all; warning off all;

% membaca citra RGB
im = imread('cristiano ronaldo.jpg');
figure,imshow(im);

-read more->

Identifikasi Jenis Bunga Menggunakan Ekstraksi Ciri Orde Satu Dan Algoritma Multisvm


Ekstraksi ciri orde satu merupakan metode pengambilan ciri yang didasarkan pada karakteristik histogram citra. Beberapa parameter ciri orde satu antara lain adalah mean, skewness, variance, kurtosis, dan entropy. Parameter ciri tersebut dapat digunakan sebagai masukan dalam algoritma identifikasi untuk mengenali objek dalam citra. Berikut ini merupakan contoh pemrograman matlab untuk mengidentifikasi jenis bunga menggunakan ekstraksi ciri orde satu dan algoritma multisvm. Citra yang digunakan terdiri dari lima jenis bunga yaitu calendula, iris, leucanthemum maximum, peony, dan rose. Pada data latih digunakan 6 citra pada masing-masing jenis bunga sehingga jumlah total data latih adalah 30 citra. Sedangkan pada data uji digunakan 2 citra pada masing-masing jenis bunga sehingga jumlah total data uji adalah 10 citra (sumber dataset citra: https://www.kaggle.com/olgabelitskaya/flower-color-images).

Beberapa citra pada data latih ditunjukkan pada gambar berikut ini:

-read more->

Analisis Tekstur Menggunakan Metode GLCM, LBP, dan FLBP


Tekstur merupakan salah satu ciri yang bisa diekstrak dari suatu citra digital. Tekstur dapat digunakan sebagai ciri yang membedakan antara citra yang satu dengan citra lainnya. Analisis tekstur dapat diimplementasikan ke dalam bidang pengolahan citra antara lain untuk pengenalan motif kain batik, identifikasi kualitas daging, identifikasi tumor/kanker, dll.

Berikut ini merupakan contoh pemrograman matlab mengenai analisis tekstur menggunakan tiga buah metode yang berbeda yaitu Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP), dan Fuzzy Local Binary Pattern (FLBP). Pada pemrograman ini analisis tekstur dilakukan terhadap citra yang diberi perlakuan rotasi. Hal ini dilakukan untuk melihat pengaruh rotasi dalam analisis tekstur pada masing-masing metode.

Tampilan citra asli dan setelah diberi perlakuan rotasi ditunjukkan pada gambar di bawah ini.

bricks.jpg

bricksRotated.jpg

-read more->

Pengenalan Pola Bentuk Menggunakan Chain Code Dan Multi SVM


Sama halnya seperti moment invariants, chain code atau kode rantai merupakan salah satu algoritma ekstraksi ciri bentuk yang nilainya tidak berubah terhadap perlakuan rotasi, translasi, pencerminan, dan penskalaan. Pada metode ini dihasilkan delapan nilai yang menunjukkan arah piksel penyusun objek. Arah piksel dari chain code 8-connected ditunjukkan pada gambar di bawah ini.

Berikut ini merupakan contoh pemrograman matlab mengenai pengenalan pola bentuk menggunakan algoritma chain code pada ekstraksi ciri dan algoritma multi SVM (Support Vector Machine) pada identifikasi. Citra yang digunakan terdiri dari tiga jenis bentuk objek yaitu botol (bottle), garpu (fork), dan palu (hammer). Pada data latih digunakan 15 citra pada masing-masing bentuk objek sehingga jumlah total data latih adalah 45 citra. Sedangkan pada data uji digunakan 5 citra pada masing-masing bentuk objek sehingga jumlah total data uji adalah 15 citra (sumber dataset citra: http://www.dabi.temple.edu/~shape/MPEG7/dataset.html)

Beberapa citra pada data latih ditunjukkan pada gambar berikut ini:

-read more->

Pengenalan Pola Bentuk Menggunakan Moment Invariants Dan Jaringan Syaraf Tiruan LVQ


Moment Invariants merupakan salah satu metode ekstraksi ciri bentuk yang nilainya tidak berubah terhadap perlakuan rotasi, translasi, pencerminan, dan penskalaan. Pada metode ini dihasilkan tujuh nilai moment yang dapat menggambarkan suatu objek berdasarkan posisi, orientasi dan parameter-parameter lainnya.

Berikut ini merupakan contoh pemrograman MATLAB untuk melakukan pengenalan pola bentuk menggunakan moment invariants dan jaringan syaraf tiruan Learning Vector Quantization (LVQ).

Citra yang digunakan terdiri dari tiga jenis bentuk yaitu bentuk hewan burung (bird), kadal (lizard), dan gurita (octopus). Pada data latih digunakan 15 citra pada masing-masing hewan sehingga jumlah total data latih adalah 45 citra. Sedangkan pada data uji digunakan 5 citra pada masing-masing hewan sehingga jumlah total data uji adalah 15 citra (sumber dataset citra: http://www.dabi.temple.edu/~shape/MPEG7/dataset.html)

Beberapa citra pada data latih ditunjukkan pada gambar berikut ini:

-read more->

Pengenalan Wajah Menggunakan Algoritma PCA


Salah satu algoritma yang dapat diimplementasikan dalam sistem pengenalan wajah (face recognition) adalah Principal Component Analysis (PCA). Berikut ini merupakan contoh pemrograman MATLAB mengenai pengenalan wajah menggunakan algoritma PCA. Source code yang digunakan merupakan modifikasi dari source code yang sebelumnya dikembangkan oleh Kalyan Sourav Dash. Modifikasi dilakukan untuk menghitung akurasi pelatihan dan pengujian serta memvisualisasikan citra wajah hasil pengenalan.

Pada pemrograman pengenalan wajah ini digunakan citra latih yang terdiri dari 10 individu (5 pria dan 5 wanita), pada masing-masing individu terdiri dari 15 citra wajah sehingga jumlah total data latih adalah sebanyak 150 citra wajah. Sedangkan pada citra uji, masing-masing individu terdiri dari 5 citra wajah sehingga jumlah total data uji adalah sebanyak 50 citra wajah. Berikut ini merupakan tampilan beberapa citra latih yang digunakan: (sumber dataset citra wajah: https://cswww.essex.ac.uk/mv/allfaces/faces94.html)

-read more->

Deteksi Titik Sudut Citra Untuk Identifikasi Bentuk


Proses identifikasi bentuk pada citra digital salah satunya dapat dilakukan dengan cara melakukan deteksi terhadap jumlah garis dan titik sudut penyusun objek dalam citra. Berikut ini merupakan contoh pemrograman matlab mengenai deteksi garis dan titik sudut menggunakan transformasi Hough.

Langkah-langkahnya adalah sebagai berikut:
1. Membaca, meresize, dan menampilkan citra

clc; clear; close all; warning off all;

% baca & resize citra
I = imread('bintang.jpg');
I = imresize(I,0.2);

% menampilkan citra asli
figure,imshow(I);
title('Citra Asli');

-read more->

Ekstraksi Ciri Wajah Menggunakan Algoritma Viola-Jones


Tahapan Face Recognition (Pengenalan Wajah) antara lain adalah face detection (deteksi wajah), feature extraction (ekstraksi ciri), dan recognition (pengenalan). Berikut ini merupakan contoh aplikasi deteksi wajah dan ekstraksi ciri wajah menggunakan bahasa pemrograman MATLAB. Objek yang dideteksi antara lain adalah wajah, mata (kanan dan kiri), hidung, dan mulut. Sedangkan ciri yang diekstrak adalah jarak antara masing-masing objek yang dideteksi.

1. Tampilan Halaman GUI awal

-read more->

Identifikasi Jenis Buah Tomat Berdasarkan Analisis Bentuk Dan Tekstur


Analisis bentuk dan tekstur dapat digunakan untuk merancang sebuah sistem identifikasi objek. Berikut ini merupakan contoh pemrograman MATLAB untuk mengidentifikasi jenis buah tomat (hijau dan merah) berdasarkan analisis bentuk dan tekstur. Analisis bentuk dilakukan menggunakan parameter metric dan eccentricity, sedangkan analisis tekstur dilakukan menggunakan metode Gray Level Co-occurence Matrix (GLCM) dengan parameter contrast, correlation, energy, dan homogeneity.

Langkah-langkah pemrograman-nya adalah sebagai berikut:
1. Mempersiapkan citra buah tomat

Citra yang digunakan berjumlah 8 yang terdiri dari 4 citra buah tomat berwarna hijau dan 4 citra buah tomat berwarna merah

-read more->

Pengenalan Warna Objek


Komponen Hue dari citra HSV (Hue, Saturation, Value) merupakan suatu komponen yang merepresentasikan warna dari panjang gelombang cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Oleh karena itu, komponen ini dapat digunakan sebagai acuan untuk melakukan pengenalan warna suatu objek pada citra digital.

Berikut ini merupakan pengolahan citra digital untuk melakukan pengenalan warna suatu objek berdasarkan komponen Hue.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('stabilo.jpg');
figure, imshow(I);

-read more->

%d bloggers like this: