Blog Archives

Pengenalan Warna Objek


Komponen Hue dari citra HSV (Hue, Saturation, Value) merupakan suatu komponen yang merepresentasikan warna dari panjang gelombang cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Oleh karena itu, komponen ini dapat digunakan sebagai acuan untuk melakukan pengenalan warna suatu objek pada citra digital.

Berikut ini merupakan pengolahan citra digital untuk melakukan pengenalan warna suatu objek berdasarkan komponen Hue.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('stabilo.jpg');
figure, imshow(I);

-read more->

Mendeteksi Objek yang Berbentuk Lingkaran


Bentuk merupakan salah satu ciri yang dapat diekstrak dari suatu objek. Ciri ini dapat digunakan untuk membedakan antara objek yang satu dengan lainnya. Berikut ini merupakan contoh pengolahan citra untuk mendeteksi objek yang berbentuk lingkaran. Salah satu parameter yang dapat digunakan untuk mendefinisikan bentuk lingkaran adalah metric. Metric merupakan perbandingan antara luas dan keliling suatu objek. Nilai metric berkisar antara 0 s.d 1. Objek yang berbentuk lingkaran, nilai metric nya mendekati angka satu. Materi lebih lanjut mengenai nilai metric dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan untuk mendeteksi objek yang berbentuk lingkaran adalah:

1. Membaca citra RGB asli

clc; clear; close all;
I = imread('shape object.jpg');
figure, imshow(I);

-read more->

Ekstraksi Ciri Nilai RGB


Ekstraksi ciri merupakan tahapan mengekstrak informasi yang terkandung dalam suatu objek dalam citra digital. Informasi tersebut digunakan untuk membedakan antara objek yang satu dengan objek lainnya pada tahapan pengenalan atau identifikasi citra.

Berikut ini merupakan contoh pengolahan citra untuk melakukan proses ekstraksi ciri warna berdasarkan nilai rata-rata RGB pada masing-masing objek yang tersegmentasi.

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:

1. Membaca citra RGB asli

clc; clear; close all;
 
I = imread('balls.jpg');
figure, imshow(I);

-read more->

Pencocokan Citra


Pencocokan citra (image matching) merupakan salah satu bagian dari pengolahan citra yang dilakukan untuk mencari citra lain yang sejenis atau memiliki kemiripan. Salah satu parameter yang merepresentasikan tingkat kemiripan antara dua buah citra adalah jarak euclidean. Semakin kecil jarak euclidean antara dua buah citra maka akan semakin mirip kedua citra tersebut. Persamaan untuk menghitung jarak euclidean adalah sebagai berikut:

Jarak euclidean dapat dihitung berdasarkan ciri khusus yang dimiliki oleh suatu citra. Ciri tersebut di antaranya adalah ciri warna, ciri tekstur, ciri bentuk, ciri geometri, dan ciri ukuran.

Berikut ini merupakan contoh sistem pencocokan citra menggunakan jarak euclidean berdasarkan pada ciri warna. Ciri warna dihitung pada ruang warna HSV yang terdiri dari komponen Hue, Saturation, dan Value. Sistem pencocokan citra diimplementasikan dalam bentuk tampilan GUI menggunakan bahasa pemrograman MATLAB.

Langkah-langkah pemrogramannya adalah sebagai berikut:

1. Mempersiapkan data base citra

-read more->

Thresholding Citra


Citra digital merupakan representasi dari fungsi intensitas cahaya dalam bidang dua dimensi. Berdasarkan jenis warnanya, citra dapat dikelompokkan menjadi tiga jenis yaitu citra RGB, citra grayscale, dan citra biner.

Citra RGB

Citra Grayscale

Citra Biner

lena lena_gray lena_bw

Citra RGB merupakan citra yang tersusun oleh tiga kanal warna yaitu kanal merah, kanal hijau, dan kanal biru. Pada citra RGB 24-bit, masing-masing kanal warna memiliki nilai intensitas piksel dengan kedalaman bit sebesar 8-bit yang artinya memiliki variasi warna sebanyak 2^8 = 256 derajat warna (0 s.d 255). Setiap piksel pada citra RGB memiliki nilai intensitas yang merupakan kombinasi dari nilai R, G, dan B. Variasi warna pada setiap piksel pada citra RGB adalah sebanyak 256 x 256 x 256 = 16.777.216.

-read more->

Ekstraksi Ciri Citra Grayscale


Ekstraksi ciri merupakan tahapan yang sangat penting dalam pengenalan pola. Tahapan ini bertujuan untuk memperoleh informasi yang terkandung dalam suatu citra untuk kemudian dijadikan sebagai acuan untuk membedakan antara citra yang satu dengan citra yang lain.

Ekstraksi ciri dapat dilakukan setelah tahapan segmentasi citra (memisahkan antara objek dengan background) maupun tanpa segmentasi citra (objek adalah background dan background adalah objek).

Berikut ini merupakan contoh pemrograman matlab untuk melakukan ekstraksi ciri citra grayscale baik yang didahului dengan tahapan segmentasi maupun tidak.

Langkah-langkah pemrogramannya yaitu:

A. Ekstraksi ciri didahului dengan segmentasi

1. Membaca dan menampilkan citra RGB asli

clc; clear; close all; warning off all;
I = imread('candy.png');
figure, imshow(I);

candy

-read more->

Segmentasi Citra dengan Metode Thresholding


Thresholding merupakan salah satu metode segmentasi citra yang memisahkan antara objek dengan background dalam suatu citra berdasarkan pada perbedaan tingkat kecerahannya atau gelap terang nya. Region citra yang cenderung gelap akan dibuat semakin gelap (hitam sempurna dengan nilai intensitas sebesar 0), sedangkan region citra yang cenderung terang akan dibuat semakin terang (putih sempurna dengan nilai intensitas sebesar 1). Oleh karena itu, keluaran dari proses segmentasi dengan metode thresholding adalah berupa citra biner dengan nilai intensitas piksel sebesar 0 atau 1. Setelah citra sudah tersegmentasi atau sudah berhasil dipisahkan objeknya dengan background, maka citra biner yang diperoleh dapat dijadikan sebagai masking utuk melakukan proses cropping sehingga diperoleh tampilan citra asli tanpa background atau dengan background yang dapat diubah-ubah.

Berikut ini merupakan contoh pemrograman matlab mengenai aplikasi dari metode thresholding untuk melakukan segmentasi terhadap citra digital. Setelah objek berhasil disegmentasi, proses selanjutnya adalah mengganti-ganti background citra rgb asli

Langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli

clc; clear; close all;

% Object
Img = imread('the mario bros.jpg');
figure, imshow(Img);

Sehingga diperoleh tampilan

-read more->

Pengolahan Citra untuk Ekstraksi Ciri Objek


Ekstraksi ciri citra merupakan tahapan mengekstrak ciri atau informasi yang dimiliki oleh suatu objek dalam citra. Ciri atau informasi tersebut dapat digunakan untuk membedakan antara objek yang satu dengan objek lainnya.

Ekstraksi ciri citra merupakan tahapan yang sangat penting dalam sebuah sistem visi komputer. Tahapan ini menentukan baik tidaknya tingkat pengenalan objek yang dilakukan oleh komputer.

Dalam pemilihan ciri hendaknya memperhatikan hal-hal sebagai berikut:

  1. Secara visual, ciri apakah yang membedakan antara objek satu dengan lainnya. Apakah bentuknya, warnanya, teksturnya, ukurannya, atau geometrinya.
  2. Parameter apakah yang mewakili ciri tersebut. Misalnya secara visual antara objek satu dengan lainnya tampak berbeda ukurannya, maka parameter yang dapat digunakan untuk mengenali objek adalah luas.
  3. Menentukan jumlah parameter yang akan digunakan. Semakin banyak parameter pada umumnya tingkat pengenalan semakin baik. Namun harus dipastikan bahwa parameter-parameter yang digunakan benar-benar dapat membedakan antar objek.

Ciri yang diekstrak dalam tahapan ekstraksi ciri kemudian digunakan sebagai masukan dalam tahapan klasifikasi objek. Tahapan klasifikasi dapat menggunakan berbagai jenis algoritma ataupun dapat juga menggunakan aturan if else sederhana.

Berikut ini merupakan contoh pemrograman komputer menggunakan bahasa pemrograman MATLAB untuk melakukan ekstraksi ciri objek dalam citra digital. Citra yang digunakan adalah citra sand play set.jpg yang ditunjukkan pada gambar di bawah ini:

-read more->

Segmentasi Citra Grayscale dengan Metode K-Means Clustering


K-means clustering merupakan salah satu algoritma yang dapat mempartisi data menjadi beberapa region kluster. Proses partisi data didasarkan pada jarak terdekat antara data dengan centroid masing-masing kluster. Berikut ini merupakan salah satu contoh pemrograman matlab mengenai segmentasi citra grayscale dengan metode k-means clustering. Citra yang digunakan adalah citra cat.jpg di mana objek yang ingin disegmentasi adalah berupa hewan kucing, sedangkan background adalah berupa rumput.

Langkah-langkah segmentasi citra adalah sebagai berikut:
1. Membaca citra rgb asli

-read more->

Segmentasi Pola Tekstur menggunakan Filter Gabor


Kemampuan sistem visual manusia dalam membedakan pola tekstur didasarkan pada kapabilitas dalam mengidentifikasikan berbagai frekuensi dan orientasi spasial dari tekstur yang diamati.

Filter Gabor merupakan salah satu filter yang mampu mensimulasikan karakteristik sistem visual manusia dalam mengisolasi frekuensi dan orientasi tertentu dari citra.

Karakteristik ini membuat filter Gabor sesuai untuk aplikasi pengenalan tekstur dalam bidang computer vision.

Berikut ini merupakan pemrograman matlab untuk melakukan segmentasi pola tekstur dari suatu citra menggunakan filter Gabor. Koding dapat dijalankan minimal menggunakan Matlab R2015b.

Langkah-langkah pemrogramannya yaitu:
1. Membaca dan menampilkan citra asli

clc;clear;close all;

% Read the image
I = imread('metal texture.jpg');
figure,imshow(I);
title('Original Image');

sehingga diperoleh tampilan

-read more->

%d bloggers like this: