Blog Archives
Ekstraksi Ciri Citra Grayscale
Ekstraksi ciri merupakan tahapan yang sangat penting dalam pengenalan pola. Tahapan ini bertujuan untuk memperoleh informasi yang terkandung dalam suatu citra untuk kemudian dijadikan sebagai acuan untuk membedakan antara citra yang satu dengan citra yang lain.
Ekstraksi ciri dapat dilakukan setelah tahapan segmentasi citra (memisahkan antara objek dengan background) maupun tanpa segmentasi citra (objek adalah background dan background adalah objek).
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan ekstraksi ciri citra grayscale baik yang didahului dengan tahapan segmentasi maupun tidak.
Langkah-langkah pemrogramannya yaitu:
A. Ekstraksi ciri didahului dengan segmentasi
1. Membaca dan menampilkan citra RGB asli
clc; clear; close all; warning off all; I = imread('candy.png'); figure, imshow(I);
Segmentasi Citra dengan Metode Thresholding
Thresholding merupakan salah satu metode segmentasi citra yang memisahkan antara objek dengan background dalam suatu citra berdasarkan pada perbedaan tingkat kecerahannya atau gelap terang nya. Region citra yang cenderung gelap akan dibuat semakin gelap (hitam sempurna dengan nilai intensitas sebesar 0), sedangkan region citra yang cenderung terang akan dibuat semakin terang (putih sempurna dengan nilai intensitas sebesar 1). Oleh karena itu, keluaran dari proses segmentasi dengan metode thresholding adalah berupa citra biner dengan nilai intensitas piksel sebesar 0 atau 1. Setelah citra sudah tersegmentasi atau sudah berhasil dipisahkan objeknya dengan background, maka citra biner yang diperoleh dapat dijadikan sebagai masking utuk melakukan proses cropping sehingga diperoleh tampilan citra asli tanpa background atau dengan background yang dapat diubah-ubah.
Berikut ini merupakan contoh pemrograman matlab mengenai aplikasi dari metode thresholding untuk melakukan segmentasi terhadap citra digital. Setelah objek berhasil disegmentasi, proses selanjutnya adalah mengganti-ganti background citra rgb asli
Langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli
clc; clear; close all; % Object Img = imread('the mario bros.jpg'); figure, imshow(Img);
Segmentasi Citra Grayscale dengan Metode K-Means Clustering
K-means clustering merupakan salah satu algoritma yang dapat mempartisi data menjadi beberapa region kluster. Proses partisi data didasarkan pada jarak terdekat antara data dengan centroid masing-masing kluster. Berikut ini merupakan salah satu contoh aplikasi pemrograman matlab mengenai segmentasi citra grayscale dengan metode k-means clustering. File citra yang digunakan adalah ‘cat.jpg’ di mana objek yang ingin disegmentasi adalah berupa hewan kucing, sedangkan background adalah berupa rumput.
Langkah-langkah segmentasi citra adalah sebagai berikut:
1. Membaca citra rgb asli
Segmentasi Citra dengan Metode Multi Thresholding dan K-Means Clustering
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan segmentasi citra dengan menggunakan dua buah metode yang berbeda. Metode yang pertama yaitu multi thresholding, sedangkan metode yang kedua adalah k-means clustering. Segmentasi dilakukan terhadap citra rose.jpg yang ditunjukkan pada gambar di bawah ini.