Blog Archives

Mendeteksi Objek yang Berbentuk Lingkaran


Bentuk merupakan salah satu ciri yang dapat diekstrak dari suatu objek. Ciri ini dapat digunakan untuk membedakan antara objek yang satu dengan lainnya. Berikut ini merupakan contoh aplikasi pengolahan citra untuk mendeteksi objek yang berbentuk lingkaran. Salah satu parameter yang dapat digunakan untuk mendefinisikan bentuk lingkaran adalah metric. Metric merupakan nilai perbandingan antara luas dan keliling suatu objek. Nilai metric berkisar antara 0 s.d 1. Objek yang berbentuk lingkaran, nilai metric nya mendekati angka satu. Materi lebih lanjut mengenai nilai metric dapat dilihat pada halaman berikut ini: Ekstraksi Ciri

Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan untuk mendeteksi objek yang berbentuk lingkaran adalah:

1. Membaca citra RGB asli

clc; clear; close all;
I = imread('shape object.jpg');
figure, imshow(I);
-read more->

Multi-Level Thresholding


Multi-level thresholding merupakan metode segmentasi citra yang menggunakan dua atau lebih nilai threshold. Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode multi-level thresholding adalah:

di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T1 adalah nilai threshold bawah
T2 adalah nilai threshold atas

Ilustrasi perubahan nilai piksel pada proses multi-level thresholding ditunjukkan pada gambar di bawah ini

-read more->

Thresholding


Thresholding merupakan salah satu metode segmentasi citra di mana prosesnya didasarkan pada perbedaan derajat keabuan citra.

Dalam proses ini dibutuhkan suatu nilai batas yang disebut dengan nilai threshold.

Nilai intensitas citra yang lebih dari atau sama dengan nilai threshold akan diubah menjadi 1 (berwarna putih) sedangkan nilai intensitas citra yang kurang dari nilai threshold akan diubah menjadi 0 (berwana hitam). Sehingga citra keluaran dari hasil thresholding adalah berupa citra biner.

Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode thresholding adalah:

di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T adalah nilai threshold

-read more->

Thresholding Citra


Citra digital merupakan representasi dari fungsi intensitas cahaya dalam bidang dua dimensi. Berdasarkan jenis warnanya, citra dapat dikelompokkan menjadi tiga jenis yaitu citra RGB, citra grayscale, dan citra biner.

Citra RGB

Citra Grayscale

Citra Biner

lena lena_gray lena_bw

Citra RGB merupakan citra yang tersusun oleh tiga kanal warna yaitu kanal merah, kanal hijau, dan kanal biru. Pada citra RGB 24-bit, masing-masing kanal warna memiliki nilai intensitas piksel dengan kedalaman bit sebesar 8-bit yang artinya memiliki variasi warna sebanyak 2^8 = 256 derajat warna (0 s.d 255). Setiap piksel pada citra RGB memiliki nilai intensitas yang merupakan kombinasi dari nilai R, G, dan B. Variasi warna pada setiap piksel pada citra RGB adalah sebanyak 256 x 256 x 256 = 16.777.216.

-read more->

Segmentasi Citra dengan Metode Thresholding


Thresholding merupakan salah satu metode segmentasi citra yang memisahkan antara objek dengan background dalam suatu citra berdasarkan pada perbedaan tingkat kecerahannya atau gelap terang nya. Region citra yang cenderung gelap akan dibuat semakin gelap (hitam sempurna dengan nilai intensitas sebesar 0), sedangkan region citra yang cenderung terang akan dibuat semakin terang (putih sempurna dengan nilai intensitas sebesar 1). Oleh karena itu, keluaran dari proses segmentasi dengan metode thresholding adalah berupa citra biner dengan nilai intensitas piksel sebesar 0 atau 1. Setelah citra sudah tersegmentasi atau sudah berhasil dipisahkan objeknya dengan background, maka citra biner yang diperoleh dapat dijadikan sebagai masking utuk melakukan proses cropping sehingga diperoleh tampilan citra asli tanpa background atau dengan background yang dapat diubah-ubah.

Berikut ini merupakan contoh pemrograman matlab mengenai aplikasi dari metode thresholding untuk melakukan segmentasi terhadap citra digital. Setelah objek berhasil disegmentasi, proses selanjutnya adalah mengganti-ganti background citra rgb asli

Langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli

clc; clear; close all;

% Object
Img = imread('the mario bros.jpg');
figure, imshow(Img);

Sehingga diperoleh tampilan

-read more->

%d bloggers like this: