Blog Archives
Mendeteksi Objek yang Berbentuk Lingkaran
Bentuk merupakan salah satu ciri yang dapat diekstrak dari suatu objek. Ciri ini dapat digunakan untuk membedakan antara objek yang satu dengan lainnya. Berikut ini merupakan contoh aplikasi pengolahan citra untuk mendeteksi objek yang berbentuk lingkaran. Salah satu parameter yang dapat digunakan untuk mendefinisikan bentuk lingkaran adalah metric. Metric merupakan nilai perbandingan antara luas dan keliling suatu objek. Nilai metric berkisar antara 0 s.d 1. Objek yang berbentuk lingkaran, nilai metric nya mendekati angka satu. Materi lebih lanjut mengenai nilai metric dapat dilihat pada halaman berikut ini: Ekstraksi Ciri
Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan untuk mendeteksi objek yang berbentuk lingkaran adalah:
1. Membaca citra RGB asli
clc; clear; close all; I = imread('shape object.jpg'); figure, imshow(I);

Ekstraksi Ciri Bentuk dan Ukuran
Ciri yang dapat diekstrak dari suatu objek dalam citra antara lain adalah warna, bentuk, ukuran, dan tekstur. Ciri tersebut dapat digunakan sebagai parameter untuk membedakan antara objek yang satu dengan objek lainnya.
Berikut ini merupakan contoh aplikasi pengolahan citra digital untuk melakukan proses ekstraksi ciri bentuk dan ukuran pada citra RGB. Parameter yang digunakan untuk mewakili ciri bentuk adalah metric dan eccentricity, sedangkan parameter yang mewakili ciri ukuran adalah luas dan keliling.
Materi mengenai definisi masing-masing parameter ciri bentuk dan ukuran dapat dilihat pada halaman berikut ini: Ekstraksi Ciri
Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:
1. Membaca citra RGB asli
clc; clear; close all; warning off all; I = imread('fruits.jpg'); figure, imshow(I);
Ekstraksi Ciri Nilai RGB
Ekstraksi ciri merupakan tahapan mengekstrak informasi yang terkandung dalam suatu objek dalam citra digital. Informasi tersebut digunakan untuk membedakan antara objek yang satu dengan objek lainnya pada tahapan pengenalan atau identifikasi citra.
Berikut ini merupakan contoh aplikasi pengolahan citra untuk melakukan proses ekstraksi ciri warna berdasarkan nilai rata-rata RGB pada masing-masing objek yang tersegmentasi.
Langkah-langkah pengolahan citra dan pemrograman MATLAB yang dilakukan adalah sebagai berikut:
1. Membaca citra RGB asli
clc; clear; close all; I = imread('balls.jpg'); figure, imshow(I);
Thresholding
Thresholding merupakan salah satu metode segmentasi citra di mana prosesnya didasarkan pada perbedaan derajat keabuan citra.
Dalam proses ini dibutuhkan suatu nilai batas yang disebut dengan nilai threshold.
Nilai intensitas citra yang lebih dari atau sama dengan nilai threshold akan diubah menjadi 1 (berwarna putih) sedangkan nilai intensitas citra yang kurang dari nilai threshold akan diubah menjadi 0 (berwana hitam). Sehingga citra keluaran dari hasil thresholding adalah berupa citra biner.
Persamaan yang digunakan untuk mengkonversi nilai piksel citra grayscale menjadi biner pada metode thresholding adalah:
di mana
f(x,y) adalah citra grayscale
g(x,y) adalah citra biner
T adalah nilai threshold
Thresholding Citra
Citra digital merupakan representasi dari fungsi intensitas cahaya dalam bidang dua dimensi. Berdasarkan jenis warnanya, citra dapat dikelompokkan menjadi tiga jenis yaitu citra RGB, citra grayscale, dan citra biner.
Citra RGB |
Citra Grayscale |
Citra Biner |
![]() |
![]() |
![]() |
Citra RGB merupakan citra yang tersusun oleh tiga kanal warna yaitu kanal merah, kanal hijau, dan kanal biru. Pada citra RGB 24-bit, masing-masing kanal warna memiliki nilai intensitas piksel dengan kedalaman bit sebesar 8-bit yang artinya memiliki variasi warna sebanyak 2^8 = 256 derajat warna (0 s.d 255). Setiap piksel pada citra RGB memiliki nilai intensitas yang merupakan kombinasi dari nilai R, G, dan B. Variasi warna pada setiap piksel pada citra RGB adalah sebanyak 256 x 256 x 256 = 16.777.216.