Blog Archives
Segmentasi Citra Grayscale dengan Metode K-Means Clustering
K-means clustering merupakan salah satu algoritma yang dapat mempartisi data menjadi beberapa region kluster. Proses partisi data didasarkan pada jarak terdekat antara data dengan centroid masing-masing kluster. Berikut ini merupakan salah satu contoh aplikasi pemrograman matlab mengenai segmentasi citra grayscale dengan metode k-means clustering. File citra yang digunakan adalah ‘cat.jpg’ di mana objek yang ingin disegmentasi adalah berupa hewan kucing, sedangkan background adalah berupa rumput.
Langkah-langkah segmentasi citra adalah sebagai berikut:
1. Membaca citra rgb asli
Pengolahan Video untuk Mendeteksi Objek Bergerak dengan Metode Background Subtraction
Berikut ini merupakan contoh aplikasi pemrograman matlab mengenai pengolahan video untuk mendeteksi objek bergerak (object tracking) dengan metode background subtraction.
Secara garis besar langkah-langkahnya adalah:
1. Mengekstrak semua frame pada video
2. Mencari frame background secara otomatis dengan cara menghitung nilai modus pada setiap frame
3. Mengkonversi CurrentFrame dan BackgroundFrame menjadi citra grayscale
4. Mengkurangkan antara kedua frame tersebut
5. Mengkonversi citra hasil pengurangan menjadi citra biner
6. Melakukan operasi morfologi untuk menghilangkan noise
7. Menjadikan citra hasil operasi morfologi sebagai masking untuk memvisualisasikan objek yang bergerak
8. Menjalankan setiap frame hasil deteksi secara sekuensial (video)
Pada contoh ini digunakan video dengan spesifikasi sebagai berikut:
Name: ‘SampleVideo.avi’
Duration: 5.3333
Width: 360
Height: 240
FrameRate: 15.0000
BitsPerPixel: 24
VideoFormat: ‘RGB24’
Video tersebut memiliki durasi selama 5.3333 detik dan frame rate sebesar 15 frame per detik sehingga banyaknya frame ketika diekstrak adalah 5.3333 x 15 = 80 frame. Tampilan frame pada setiap detik ditunjukkan pada gambar di bawah ini:
Detik ke- | Frame |
0 | ![]() |
1 | ![]() |
2 | ![]() |
3 | ![]() |
4 | ![]() |
5 | ![]() |