Blog Archives

Pengolahan Citra Digital untuk Mendeteksi Warna dan Bentuk Obyek


Berikut ini merupakan contoh aplikasi pemrograman GUI Matlab untuk mendeteksi warna dan bentuk suatu objek pada citra digital.

Proses deteksi warna diawali dengan mengkonversi ruang warna citra RGB (Red, Green, Blue) menjadi HSV (Hue, Saturation, Value). Selanjutnya proses klasifikasi warna dilakukan berdasarkan pengelompokan nilai Hue.

Sedangkan proses deteksi bentuk diawali dengan mengkonversi ruang warna citra RGB menjadi grayscale. Setelah itu dilakukan thresholding sehingga diperoleh citra biner. Kemudian dilakukan ekstraksi ciri morfologi dari citra biner berdasarkan parameter eccentricity dan metric. Proses klasifikasi citra dilakukan berbasis aturan (rule based) sederhana.

1. Membuka tampilan GUI awal

-read more->

k-means clustering menggunakan matlab


Data clustering merupakan salah satu metode data mining yang bersifat tanpa arahan (unsupervised).

Ada dua jenis data clustering yang sering digunakan dalam proses pengelompokan data yaitu hierarchical (hirarki) data clustering dan non-hierarchical (non hirarki) data clustering.

K-means merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam satu atau lebih cluster/kelompok.

Metode ini mempartisi data ke dalam cluster/kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain.

Ilustrasi algoritma k-means ditunjukkan pada gambar di bawah ini:


-read more->

k-Nearest Neighbor (k-NN) Menggunakan Matlab


Algoritma k-nearest neighbor (k-NN atau KNN) merupakan sebuah algoritma untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut.

Ilustrasi dari metode yang digunakan oleh algoritma k-nn ditunjukkan pada gambar di bawah ini:

-read more->

%d bloggers like this: