Blog Archives

Transformasi Fourier Satu Dimensi


Transformasi Fourier merupakan operasi transformasi yang mengubah domain suatu sinyal periodik dari domain waktu menjadi domain frekuensi. Transformasi ini umumnya digunakan pada bidang pengolahan sinyal digital maupun bidang pengolahan citra digital. Pada tahun 1822, Joseph Fourier, ahli matematika dari Perancis mengemukakan bahwa:

“Setiap fungsi periodik (sinyal) dapat dibentuk dari penjumlahan gelombang-gelombang sinus atau cosinus”.

Berikut ini merupakan contoh pemrograman matlab mengenai tranformasi Fourier satu dimensi. Persamaan yang digunakan untuk membentuk sinyal periodik dalam domain waktu pada contoh ini adalah y = sin (2*pi*f1*t) + sin (2*pi*f2*t).

1. Sinyal periodik dengan f1 = 30 dan f2 = 0

-read more->

Complement Image (Negative Image)


Citra negatif merupakan citra yang nilai pikselnya berkebalikan dengan citra aslinya. Untuk citra grayscale 8-bit, apabila citra asli disimbolkan dengan I, maka negatif dari citra tersebut adalah I’ = 255-I. Contoh perhitungan nilai piksel dari citra negatif ditunjukkan pada gambar di bawah ini:


Berikut ini merupakan pemrograman GUI Matlab mengenai citra komplemen/ citra negatif
1. Citra RGB (RGB Image)


-read more->

Logika Fuzzy untuk Sistem Pengatur Kecepatan Mesin


Dalam paper yang berjudul Fuzzy Sets*, pada tahun 1965 Dr. Lotfi Aliasker Zadeh (Ilmuwan Amerika Serikat berkebangsaan Iran dari University of California, Berkeley, California) memperkenalkan teori fuzzy yang mampu memetakan nilai masukan menuju nilai keluaran. Tidak seperti pada logika Boolean yang menyatakan suatu nilai dengan tegas (0 atau 1, hitam atau putih, ya atau tidak, benar atau salah, hidup atau mati), teori fuzzy menggunakan logika yang menyatakan bahwa suatu nilai dapat memiliki range atau derajat level (0 s.d 1, hitam s.d putih). Logika fuzzy dapat diartikan sebagai logika yang samar, kabur, tidak jelas, atau tidak tegas. Logika fuzzy umumnya diterapkan pada masalah-masalah yang mengandung unsur ketidakpastian (uncertainty), ketidaktepatan (imprecise), noisy, dan sebagainya. Logika fuzzy menjembatani bahasa mesin yang presisi dengan bahasa manusia yang menekankan pada makna atau arti (significance). Logika fuzzy dikembangkan berdasarkan bahasa manusia (bahasa alami).

Berikut ini merupakan contoh pemrograman logika fuzzy untuk sistem pengatur kecepatan mesin menggunakan sensor suhu dan sensor cahaya sebagai masukan.
Langkah-langkahnya adalah sebagai berikut:
1. Menyusun konsep sistem kontrol dengan logika fuzzy
Misalnya keadaan sensor suhu (input 1) dibagi menjadi lima kategori yaitu:
-read more->

Morphological Operation – GUI Matlab


Operasi morfologi citra merupakan suatu proses yang bertujuan untuk mengubah bentuk objek pada citra asli. Proses tersebut dapat dilakukan pada citra grayscale maupun citra biner.

Jenis-jenis operasi morfologi di antaranya adalah dilasi, erosi, closing, dan opening. Secara berurutan, persamaan yang digunakan untuk masing-masing operasi yaitu:


di mana A adalah citra asli dan B adalah structuring element. Structuring element merupakan matriks operator yang dapat berbentuk garis, persegi, disk, diamond, dll.

Contoh pemrograman GUI Matlab untuk operasi morfologi adalah sebagai berikut:

1. Membaca dan menampilkan citra asli

-read more->

Texture Analysis – Gray-Level Co-Occurrence Matrix (GLCM) – GUI Matlab


Analisis tekstur merupakan salah satu jenis ekstraksi ciri yang didasarkan pada ciri statistik citra. Analisis tekstur dapat dilakukan dengan metode ekstraksi ciri orde satu, ekstraksi ciri orde dua, filter gabor, transformasi wavelet, dsb.

Berikut ini merupakan pemrograman gui matlab untuk analisis tekstur menggunakan metode Gray-Level Co-Occurrence Matrix (GLCM) yang merupakan ciri statistik orde dua. Ekstraksi ciri dilakukan berdasarkan parameter contrast, correlation, energy, dan homogeneity.

Tampilan GUI Matlab untuk analisis tekstur citra menggunakan metode Gray-Level Co-Occurrence Matrix (GLCM) adalah sebagai berikut:

1. Gray-Level Co-Occurrence Matrix (GLCM) dengan pixel distance = 1

-read more->

Penghitungan Otomatis Jumlah Sel Darah Merah Dan Identifikasi Fase Plasmodium Falciparum Menggunakan Operasi Morfologi


Berikut ini merupakan pemrograman GUI Matlab mengenai aplikasi pengolahan citra digital untuk melakukan analisis citra sampel darah mikroskopis yang terjangkit malaria.

GUI yang dirancang merupakan bagian dari penelitian yang berjudul The Automatic Counting of The Number of Red Blood Cells and Identification of Plasmodium Falciparum Phase using Morphological Operations

Tujuan dari penelitian tersebut adalah:
1. Menghitung jumlah sel darah merah total,
2. Menghitung jumlah parasit yaitu plasmodium falciparum, dan
3. Mengidentifikasi fase perkembangan plasmodium falciparum

Proses pemisahan sel bertumpuk dilakukan dengan menggunakan operasi morfologi. Proses pemisahan ini dilakukan agar hasil penghitungan sel darah merah menjadi lebih akurat.

Sedangkan proses penghitungan dan identifikasi fase plasmodium falciparum dilakukan dengan melakukan ekstraksi ciri morfologi parasit.

Perkembangan parasit penyebab malaria terdiri dari tiga fase yaitu fase trophozoite (pertumbuhan), fase schizont (pembiakan), dan fase gametocyte (pembentukan kelamin).

Parasit pada fase trophozoite dikenali dengan ukurannya yang sangat kecil dibandingkan dengan ukuran sel normal. Parasit pada fase schizont dikenali dengan bentuknya yang hampir bulat. Sedangkan parasit pada fase gametocyte dikenali dengan bentuknya yang memanjang atau cenderung elips.

GUI Matlab untuk melakukan analisis citra sampel darah mikroskopis yang terjangkit malaria terdiri dari tiga buah tampilan yaitu:

1. Tampilan menu awal

-read more->

Model warna RGB dan histogram citra


Model warna RGB terdiri dari tiga komponen warna yaitu komponen Red, Green, dan Blue. Perintah untuk memanggil citra RGB adalah sebagai berikut:

I = imread('football.jpg');
figure, imshow(I);

-read more->

%d bloggers like this: