Category Archives: Pengolahan Citra

Pengolahan Citra Digital menggunakan GUI MATLAB

Complement Image (Negative Image)


Citra negatif merupakan citra yang nilai pikselnya berkebalikan dengan citra aslinya. Untuk citra grayscale 8-bit, apabila citra asli disimbolkan dengan I, maka negatif dari citra tersebut adalah I’ = 255-I. Contoh perhitungan nilai piksel dari citra negatif ditunjukkan pada gambar di bawah ini:


Berikut ini merupakan contoh aplikasi pemrograman GUI Matlab mengenai citra komplemen/ citra negatif
1. Citra RGB (RGB Image)


-read more->

Photo Editing using Matlab


Berikut ini merupakan contoh aplikasi pemrograman matlab untuk transformasi ruang warna pada foto. Citra asli merupakan representasi dari ruang warna RGB (Red, Green, Blue) yang terdiri dari kanal R, kanal G, dan kanal B.


Kita dapat mengubah susunan kanal warna tersebut sehingga menghasilkan citra dengan tampilan yang berbeda.
1. Citra Asli (R-G-B)

-read more->

Cara Menghitung Luas , Keliling , dan Centroid suatu Citra


Proses pengenalan objek dalam citra umumnya membutuhkan suatu ciri yang dapat membedakan antara objek yang satu dengan objek lainnya. Ciri yang dapat diekstrak antara lain adalah ciri ukuran (luas dan keliling) dan posisi (koordinat centroid) dari suatu objek.

Berikut ini merupakan contoh aplikasi pemrograman matlab untuk menghitung centroid, luas, dan keliling objek dalam suatu citra grayscale. Centroid merupakan koordinat titik tengah dari suatu objek. Luas merupakan banyaknya piksel yang menyusun suatu objek. Sedangkan keliling merupakan banyaknya piksel yang berada pada boundary objek. Hasil penghitungan geometris tersebut dapat digunakan sebagai ciri masukan dalam tahapan pengenalan pola morfologi/ bentuk.

Langkah-langkah pemrograman untuk menghitung luas, keliling, dan centroid suatu citra adalah sebagai berikut:
1. Membaca dan menampilkan citra grayscale

-read more->

Perbedaan citra gelap, terang, kontras rendah, dan kontras tinggi


Citra digital merupakan fungsi dari intensitas cahaya yang direpresentasikan oleh sekumpulan piksel (picture element) yang membentuk suatu matriks berukuran M x N di mana M merupakan jumlah baris (lebar citra) dan N merupakan jumlah kolom (panjang citra). Setiap piksel mempunyai dua informasi yaitu koordinat (x,y) dan intensitas f(x,y).

Sedangkan histogram citra merupakan diagram yang menggambarkan distribusi frekuensi nilai intensitas warna dalam suatu citra. Sumbu horizontal merupakan nilai intensitas warna sedangkan sumbu vertikal merupakan frekuensi/jumlah piksel.

Berikut ini merupakan contoh citra 8-bit berserta karakteristik berdasarkan histogramnya:
1. Citra gelap
Citra gelap merupakan citra yang memiliki banyak piksel dengan nilai intensitas mendekati 0. Distribusi nilai intensitas citra gelap cenderung berada pada daerah sebelah kiri histogram.

-read more->

Geometric Image Transformations


Dalam bidang pengolahan citra digital, terkadang diperlukan suatu proses transformasi geometri untuk memudahkan dalam pengolahan selanjutnya yang lebih kompleks. Berikut ini merupakan contoh aplikasi pemrograman GUI Matlab mengenai Geometric Image Transformations berupa operasi flip dan rotasi.

Tampilan GUI Matlab untuk transformasi geometri citra adalah:
1. Citra Asli (Original Image)

-read more->

Cara melakukan cropping citra pada GUI Matlab


Dalam pengolahan citra, terkadang kita hanya menginginkan pengolahan hanya pada daerah/bagian tertentu dari citra. Daerah yang kita inginkan tersebut disebut dengan Region of Interest (ROI). Proses untuk mendapatkan ROI salah satunya adalah dengan cara melakukan cropping pada suatu citra.

Berikut ini merupakan contoh aplikasi pemrograman GUI Matlab untuk melakukan cropping pada suatu citra:
1. Citra Asli (Original Image)

-read more->

Morphological Operation – GUI Matlab


Operasi morfologi citra merupakan suatu proses yang bertujuan untuk mengubah bentuk objek pada citra asli. Proses tersebut dapat dilakukan pada citra grayscale maupun citra biner.

Jenis-jenis operasi morfologi di antaranya adalah dilasi, erosi, closing, dan opening. Secara berurutan, persamaan yang digunakan untuk masing-masing operasi yaitu:


di mana A adalah citra asli dan B adalah structuring element. Structuring element merupakan matriks operator yang dapat berbentuk garis, persegi, disk, diamond, dll.

Contoh aplikasi pemrograman GUI Matlab untuk operasi morfologi adalah sebagai berikut:

1. Membaca dan menampilkan citra asli

-read more->

Texture Analysis – Gray-Level Co-Occurrence Matrix (GLCM) – GUI Matlab


Analisis tekstur merupakan salah satu jenis ekstraksi ciri yang didasarkan pada ciri statistik citra. Analisis tekstur dapat dilakukan dengan metode ekstraksi ciri orde satu, ekstraksi ciri orde dua, filter gabor, transformasi wavelet, dsb.

Berikut ini merupakan contoh aplikasi pemrograman gui matlab untuk analisis tekstur menggunakan metode Gray-Level Co-Occurrence Matrix (GLCM) yang merupakan ciri statistik orde dua. Ekstraksi ciri dilakukan berdasarkan parameter contrast, correlation, energy, dan homogeneity.

Tampilan GUI Matlab untuk analisis tekstur citra menggunakan metode Gray-Level Co-Occurrence Matrix (GLCM) adalah sebagai berikut:

1. Gray-Level Co-Occurrence Matrix (GLCM) dengan pixel distance = 1

-read more->

Penghitungan Otomatis Jumlah Sel Darah Merah Dan Identifikasi Fase Plasmodium Falciparum Menggunakan Operasi Morfologi


Berikut ini merupakan pemrograman GUI Matlab mengenai aplikasi pengolahan citra digital untuk melakukan analisis citra sampel darah mikroskopis yang terjangkit malaria.

GUI yang dirancang merupakan bagian dari penelitian yang berjudul The Automatic Counting of The Number of Red Blood Cells and Identification of Plasmodium Falciparum Phase using Morphological Operations

Tujuan dari penelitian tersebut adalah:
1. Menghitung jumlah sel darah merah total,
2. Menghitung jumlah parasit yaitu plasmodium falciparum, dan
3. Mengidentifikasi fase perkembangan plasmodium falciparum

Proses pemisahan sel bertumpuk dilakukan dengan menggunakan operasi morfologi. Proses pemisahan ini dilakukan agar hasil penghitungan sel darah merah menjadi lebih akurat.

Sedangkan proses penghitungan dan identifikasi fase plasmodium falciparum dilakukan dengan melakukan ekstraksi ciri morfologi parasit.

Perkembangan parasit penyebab malaria terdiri dari tiga fase yaitu fase trophozoite (pertumbuhan), fase schizont (pembiakan), dan fase gametocyte (pembentukan kelamin).

Parasit pada fase trophozoite dikenali dengan ukurannya yang sangat kecil dibandingkan dengan ukuran sel normal. Parasit pada fase schizont dikenali dengan bentuknya yang hampir bulat. Sedangkan parasit pada fase gametocyte dikenali dengan bentuknya yang memanjang atau cenderung elips.

GUI Matlab untuk melakukan analisis citra sampel darah mikroskopis yang terjangkit malaria terdiri dari tiga buah tampilan yaitu:

1. Tampilan menu awal

-read more->

Identifikasi Fase Perkembangan Plasmodium Falciparum Dalam Sel Darah Merah Yang Terinfeksi Malaria Dengan Segmentasi Warna Adaptif Dan Klasifikasi Berbasis Pohon Keputusan


Berikut ini merupakan pemrograman GUI Matlab mengenai aplikasi pengolahan citra dan pengenalan pola untuk menganalisis citra sampel darah mikroskopis yang terjangkit parasit penyebab malaria.

GUI yang dirancang merupakan bagian dari penelitian yang berjudul Identification of Plasmodium Falciparum Development Phase in Malaria Infected Red Blood Cells using Adaptive Color Segmentation and Decision Tree based Classification

Tujuan dari penelitian ini antara lain adalah:
1. Mengidentifikasi jenis fase perkembangan plasmodium falciparum yang merupakan parasit penyebab malaria
2. Menghitung jumlah plasmodium falciparum pada masing-masing fase perkembangannya

Set-up alat akuisisi citra sel darah mikroskopis ditunjukkan pada gambar berikut ini:

Set-up alat akuisisi citra sel darah merah terinfeksi plasmodium falciparum

-read more->