Blog Archives
Deteksi Tepi Citra Digital Menggunakan Matlab
Penentuan tepian suatu objek dalam citra merupakan salah satu wilayah pengolahan citra digital yang paling awal dan paling banyak diteliti. Proses ini seringkali ditempatkan sebagai langkah pertama dalam aplikasi segmentasi citra, yang bertujuan untuk mengenali objek-objek yang terdapat dalam citra ataupun konteks citra secara keseluruhan.
Deteksi tepi berfungsi untuk mengidentifikasi garis batas (boundary) dari suatu objek yang terdapat pada citra. Tepian dapat dipandang sebagai lokasi piksel dimana terdapat nilai perbedaan intensitas citra secara ekstrem. Sebuah edge detector bekerja dengan cara mengidentifikasi dan menonjolkan lokasi-lokasi piksel yang memiliki karakteristik tersebut.
Berikut ini merupakan contoh aplikasi programmatic GUI matlab untuk mendeteksi tepi suatu objek dalam citra menggunakan operator gradien, operator laplacian, dan operator canny. (Coding dapat dijalankan minimal menggunakan matlab versi r2014b).
1. Operator Gradien
a. Operator Gradien Orde Satu

-read more->
Pengolahan Citra MRI Menggunakan Matlab
Magnetic Resonance Imaging (MRI) adalah suatu alat diagnostik untuk memeriksa dan mendeteksi organ tubuh dengan menggunakan medan magnet dan gelombang frekuensi radio (tanpa operasi, penggunaan sinar X ataupun bahan radioaktif). Tampilan pesawat MRI dan proses akuisisi citra ditunjukkan pada gambar berikut ini.
Cara Menghitung Luas , Keliling , dan Centroid suatu Citra
Proses pengenalan objek dalam citra umumnya membutuhkan suatu ciri yang dapat membedakan antara objek yang satu dengan objek lainnya. Ciri yang dapat diekstrak antara lain adalah ciri ukuran (luas dan keliling) dan posisi (koordinat centroid) dari suatu objek.
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk menghitung centroid, luas, dan keliling objek dalam suatu citra grayscale. Centroid merupakan koordinat titik tengah dari suatu objek. Luas merupakan banyaknya piksel yang menyusun suatu objek. Sedangkan keliling merupakan banyaknya piksel yang berada pada boundary objek. Hasil penghitungan geometris tersebut dapat digunakan sebagai ciri masukan dalam tahapan pengenalan pola morfologi/ bentuk.
Langkah-langkah pemrograman untuk menghitung luas, keliling, dan centroid suatu citra adalah sebagai berikut:
1. Membaca dan menampilkan citra grayscale

-read more->
Deteksi wajah (face detection) menggunakan algoritma Viola-Jones
Deteksi wajah merupakan tahapan awal dalam sistem pengenalan wajah. Sistem pengenalan wajah banyak diaplikasikan dalam bidang biometrik untuk mengenali identitas pemilik wajah.
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk mendeteksi wajah (face detection).
faceDetector = vision.CascadeObjectDetector;
I = imread('visionteam.jpg');
bboxes = step(faceDetector, I);
IFaces = insertObjectAnnotation(I, 'rectangle', bboxes, 'Face');
figure, imshow(IFaces), title('Detected faces');
Model warna RGB dan histogram citra
Model warna RGB terdiri dari tiga komponen warna yaitu komponen Red, Green, dan Blue. Perintah untuk memanggil citra RGB adalah sebagai berikut:
I = imread('football.jpg');
figure, imshow(I);
















































