Category Archives: Data mining
Pembuatan Database menggunakan Matlab dan Ms. Excel
Dalam pembuatan basis data (database), Matlab dapat diintegrasikan dengan beberapa software lain contohnya adalah Microsoft Office Excel 2007. Berikut ini merupakan contoh aplikasi pemrograman matlab untuk membuat database mahasiswa menggunakan GUI Matlab R2015b.
Sistem basis data yang dirancang terdiri dari 4 buah tampilan GUI yaitu:
1. Tampilan menu Utama (Home)
Pada menu ini disajikan 4 buah tombol untuk masuk ke dalam tampilan submenu yang lain. Submenu yang lain antara lain yaitu Menu Registrasi Mahasiswa, Menu Status Mahasiswa, Menu Database Mahasiswa, dan Menu Keluar.

Jaringan Syaraf Tiruan untuk Klasifikasi Citra Daun
Salah satu penerapan dari algoritma jaringan syaraf tiruan adalah untuk proses klasifikasi citra. Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan klasifikasi terhadap citra daun. Citra daun dikelompokkan ke dalam 4 kelas spesies yaitu Bougainvillea sp, Geranium sp, Magnolia soulangeana, dan Pinus sp. Pada contoh ini digunakan 40 citra daun yang terdiri dari 10 citra pada masing-masing kelas. Contoh dari citra daun yang digunakan ditunjukkan pada gambar di bawah ini:
Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Mempersiapkan citra latih dan citra uji. Pada contoh ini 40 citra daun dibagi menjadi dua bagian yaitu 24 citra untuk citra latih dan 16 citra untuk citra uji.
Jaringan Syaraf Tiruan Untuk Pengenalan Pola
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk mengklasifikasi bentuk suatu objek dalam citra digital menggunakan algoritma jaringan syaraf tiruan propagasi balik (backpropagation neural network).
Pada contoh ini dilakukan pengklasifikasian terhadap bentuk segi-3, segi-4, dan segi-5. Ciri yang digunakan untuk membedakan ketiga jenis bentuk tersebut adalah metric dan eccentricity.
Metric merupakan nilai perbandingan antara luas dan keliling objek. Sedangkan eccentricity merupakan nilai perbandingan antara jarak foci ellips minor dengan foci ellips mayor suatu objek. (Materi mengenai ekstraksi ciri lebih lanjut dapat dilihat pada laman berikut ini: Ekstraksi Ciri Citra).
Langkah-langkah pemrograman matlab untuk mengklasifikasi bentuk suatu objek dalam citra digital menggunakan matlab adalah sebagai berikut:
1. Menyiapkan data latih untuk proses pelatihan (training). Pada proses ini digunakan 45 citra data latih yang terdiri dari 15 citra segi-3, 15 citra segi-4, dan 15 citra segi-5.
Jaringan Syaraf Tiruan untuk Prediksi menggunakan Matlab
Jaringan syaraf tiruan merupakan algoritma klasifikasi yang meniru prinsip kerja dari jaringan syaraf manusia. Algoritma ini memetakan data masukan pada layer masukan menuju target pada layer keluaran melalui neuron-neuron pada layer tersembunyi.
Data masukan dirambatkan maju, dihubungkan oleh bobot-bobot masukan yang sebelumnya telah diinisialisasi secara acak menuju neuron pada layer tersembunyi
Pada layer tersembunyi, data masukan yang telah dihubungkan dengan bobot tersebut kemudian diproses menggunakan fungsi aktivasi. Selanjutnya data hasil olahan dari layer tersembunyi dihubungkan oleh bobot-bobot tersembunyi menuju neuron pada layer keluaran.
Hasil yang diperoleh kemudian dibandingkan dengan data target sehingga diperoleh tingkat kesalahan (error). Apabila tingkat kesalahan yang diperoleh lebih kecil daripada tingkat kesalahan yang sebelumnya telah ditetapkan (target error), maka proses perambatan akan berhenti. Namun apabila tingkat kesalahan masih lebih besar daripada tingkat kesalahan tetapan maka dilakukan proses perambatan balik dengan melakukan pembaharuan bobot.
Salah satu aplikasi dari algoritma jaringan syaraf tiruan adalah untuk kasus prediksi.
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk memprediksi curah hujan menggunakan algoritma jaringan syaraf tiruan propagasi balik (backpropagation neural network).
Langkah-langkahnya yaitu:
1. Mempersiapkan data curah hujan time series untuk prediksi. Pada contoh ini digunakan data rata-rata curah hujan tiap bulan di kota Semarang pada tahun 2005 s.d 2007. Pada algoritma jaringan syaraf tiruan propagasi balik ini digunakan fungsi aktivasi sigmoid biner di mana fungsi ini bernilai antara 0 s.d 1. Namun fungsi sigmoid biner tersebut sejatinya tidak pernah mencapai angka 0 maupun 1. Oleh sebab itu, data curah hujan perlu dinormalisasi terlebih dahulu salah satu contohnya ke dalam range 0,1 s.d 0,9 menggunakan persamaan berikut ini:

di mana:
X’ = data hasil normalisasi
X = data asli/data awal
a = nilai maksimum data asli
b = nilai minimum data asli
Data curah hujan asli dan setelah dinormalisasi tampak pada gambar di bawah ini:
Pengolahan Citra Digital untuk Mendeteksi Warna dan Bentuk Obyek
Berikut ini merupakan contoh aplikasi pemrograman GUI Matlab untuk mendeteksi warna dan bentuk suatu objek pada citra digital.
Proses deteksi warna diawali dengan mengkonversi ruang warna citra RGB (Red, Green, Blue) menjadi HSV (Hue, Saturation, Value). Selanjutnya proses klasifikasi warna dilakukan berdasarkan pengelompokan nilai Hue.
Sedangkan proses deteksi bentuk diawali dengan mengkonversi ruang warna citra RGB menjadi grayscale. Setelah itu dilakukan thresholding sehingga diperoleh citra biner. Kemudian dilakukan ekstraksi ciri morfologi dari citra biner berdasarkan parameter eccentricity dan metric. Proses klasifikasi citra dilakukan berbasis aturan (rule based) sederhana.
Algoritma k-means clustering dan Naive Bayes classifier untuk Pengenalan Pola Tesktur
K-means Clustering merupakan salah satu metode data clustering non hirarki yang berusaha mempartisi data yang ada ke dalam satu atau lebih cluster/kelompok. Metode ini mempartisi data ke dalam cluster/kelompok sehingga data yang memiliki karakteristik yang sama dikelompokkan ke dalam satu cluster yang sama dan data yang mempunyai karakteristik yang berbeda dikelompokkan ke dalam kelompok yang lain.
Sedangkan Naive Bayes Classifier merupakan salah satu metode machine learning yang memanfaatkan perhitungan probabilitas dan statistik. Metode ini dikemukakan oleh ilmuwan Inggris yaitu Thomas Bayes untuk memprediksi probabilitas di masa depan berdasarkan pengalaman di masa sebelumnya.
Berikut ini merupakan contoh aplikasi pemrograman matlab (menggunakan Matlab R2015b) mengenai pola tekstur citra menggunakan algoritma k-means clustering dan naive bayes classifier. Citra yang digunakan adalah citra tekstur Brodatz sejumlah 112 buah seperti tampak pada gambar di bawah ini:
k-Nearest Neighbor (k-NN) Menggunakan Matlab
Algoritma k-nearest neighbor (k-NN atau KNN) merupakan sebuah algoritma untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut.
Ilustrasi dari metode yang digunakan oleh algoritma k-nn ditunjukkan pada gambar di bawah ini:
Cara menghitung koefisien korelasi menggunakan matlab
Koefisien korelasi merupakan suatu nilai yang digunakan untuk mengukur tingkat kedekatan hubungan antara dua variabel.
Koefisien korelasi memiliki nilai berkisar antara -1 sampai dengan +1.
Koefisien korelasi bernilai +1 berarti bahwa dua variabel berkorelasi sempurna antara satu dengan yang lain atau dapat dikatakan dua variabel tersebut identik.
Nilai positif (+) menunjukkan hubungan dua variabel yang sebanding atau berbanding lurus.
Koefisien korelasi bernilai 0 berarti bahwa dua variabel sama sekali tidak berhubungan/berkaitan satu sama lain.
Dan koefisien korelasi bernilai negatif (-) berarti bahwa dua variabel memiliki hubungan yang berbanding terbalik.
Koefisien korelasi dapat dihitung menggunakan persamaan berikut:
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk menghitung koefisien korelasi antara dua variabel.
Sebagai contoh, misalnya kita ingin merancang bangun alat untuk mengukur suhu menggunakan sensor jenis LM35, maka setelah alat tersebut dibuat perlu kita validasi dengan hasil pengukuran alat ukur suhu standar seperti termometer digital.
Langkah-langkah menghitung koefisien korelasi menggunakan matlab adalah sebagai berikut:
1. Mempersiapkan data, pada contoh ini data terdiri dari hasil pengukuran suhu menggunakan alat dan hasil pengukuran suhu menggunakan termometer digital. Data disajikan dalam format .xlsx (excel)

-read more->
Logika Fuzzy untuk Sistem Pengatur Kecepatan Mesin
Dalam paper yang berjudul Fuzzy Sets*, pada tahun 1965 Dr. Lotfi Aliasker Zadeh (Ilmuwan Amerika Serikat berkebangsaan Iran dari University of California, Berkeley, California) memperkenalkan teori fuzzy yang mampu memetakan nilai masukan menuju nilai keluaran. Tidak seperti pada logika Boolean yang menyatakan suatu nilai dengan tegas (0 atau 1, hitam atau putih, ya atau tidak, benar atau salah, hidup atau mati), teori fuzzy menggunakan logika yang menyatakan bahwa suatu nilai dapat memiliki range atau derajat level (0 s.d 1, hitam s.d putih). Logika fuzzy dapat diartikan sebagai logika yang samar, kabur, tidak jelas, atau tidak tegas. Logika fuzzy umumnya diterapkan pada masalah-masalah yang mengandung unsur ketidakpastian (uncertainty), ketidaktepatan (imprecise), noisy, dan sebagainya. Logika fuzzy menjembatani bahasa mesin yang presisi dengan bahasa manusia yang menekankan pada makna atau arti (significance). Logika fuzzy dikembangkan berdasarkan bahasa manusia (bahasa alami).
Berikut ini merupakan contoh aplikasi pemrograman logika fuzzy untuk sistem pengatur kecepatan mesin menggunakan sensor suhu dan sensor cahaya sebagai masukan.
Langkah-langkahnya adalah sebagai berikut:
1. Menyusun konsep sistem kontrol dengan logika fuzzy
Misalnya keadaan sensor suhu (input 1) dibagi menjadi lima kategori yaitu:
-read more->






















































