Blog Archives
Segmentasi Citra dengan Metode Thresholding
Thresholding merupakan salah satu metode segmentasi citra yang memisahkan antara objek dengan background dalam suatu citra berdasarkan pada perbedaan tingkat kecerahannya atau gelap terang nya. Region citra yang cenderung gelap akan dibuat semakin gelap (hitam sempurna dengan nilai intensitas sebesar 0), sedangkan region citra yang cenderung terang akan dibuat semakin terang (putih sempurna dengan nilai intensitas sebesar 1). Oleh karena itu, keluaran dari proses segmentasi dengan metode thresholding adalah berupa citra biner dengan nilai intensitas piksel sebesar 0 atau 1. Setelah citra sudah tersegmentasi atau sudah berhasil dipisahkan objeknya dengan background, maka citra biner yang diperoleh dapat dijadikan sebagai masking utuk melakukan proses cropping sehingga diperoleh tampilan citra asli tanpa background atau dengan background yang dapat diubah-ubah.
Berikut ini merupakan contoh pemrograman matlab mengenai aplikasi dari metode thresholding untuk melakukan segmentasi terhadap citra digital. Setelah objek berhasil disegmentasi, proses selanjutnya adalah mengganti-ganti background citra rgb asli
Langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli
clc; clear; close all;
% Object
Img = imread('the mario bros.jpg');
figure, imshow(Img);
Segmentasi Citra Grayscale dengan Metode K-Means Clustering
K-means clustering merupakan salah satu algoritma yang dapat mempartisi data menjadi beberapa region kluster. Proses partisi data didasarkan pada jarak terdekat antara data dengan centroid masing-masing kluster. Berikut ini merupakan salah satu contoh aplikasi pemrograman matlab mengenai segmentasi citra grayscale dengan metode k-means clustering. File citra yang digunakan adalah ‘cat.jpg’ di mana objek yang ingin disegmentasi adalah berupa hewan kucing, sedangkan background adalah berupa rumput.
Langkah-langkah segmentasi citra adalah sebagai berikut:
1. Membaca citra rgb asli
Segmentasi Warna Citra Digital
Segmentasi citra merupakan suatu proses yang bertujuan untuk memisahkan antara region foreground dengan region background. Pemisahan tersebut didasarkan pada perbedaan karakteristik masing-masing region yang mencolok.
Pada contoh pemrograman ini, dilakukan segmentasi citra berdasarkan pada perbedaan warna antara foreground dengan background. Dalam citra digital, warna yang merupakan spektrum cahaya tampak (merah, jingga, kuning, hijau, biru, ungu) direpresentasikan oleh nilai Hue. Oleh sebab itu, proses segmentasi citra pada pemrograman ini dilakukan pada ruang warna HSV (Hue, Saturation, Value).
Langkah-langkah pemrograman matlab untuk melakukan segmentasi warna adalah sebagai berikut:
1. Membaca dan menampilkan citra asli. Citra yang digunakan adalah citra bird.jpg di mana foreground atau objek yang dimaksud adalah berupa burung.
clc; clear; close all; warning off all;
% Membaca citra asli
RGB = imread('bird.jpg');
figure, imshow(RGB);
Segmentasi Pola Tekstur menggunakan Filter Gabor
Kemampuan sistem visual manusia dalam membedakan pola tekstur didasarkan pada kapabilitas dalam mengidentifikasikan berbagai frekuensi dan orientasi spasial dari tekstur yang diamati.
Filter Gabor merupakan salah satu filter yang mampu mensimulasikan karakteristik sistem visual manusia dalam mengisolasi frekuensi dan orientasi tertentu dari citra.
Karakteristik ini membuat filter Gabor sesuai untuk aplikasi pengenalan tekstur dalam bidang computer vision.
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan segmentasi pola tekstur dari suatu citra menggunakan filter Gabor. Koding dapat dijalankan minimal menggunakan Matlab R2015b.
Langkah-langkah pemrogramannya yaitu:
1. Membaca dan menampilkan citra asli
clc;clear;close all;
% Read the image
I = imread('metal texture.jpg');
figure,imshow(I);
title('Original Image');
sehingga diperoleh tampilan
Ekstraksi Ciri Citra RGB
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan proses ekstraksi ciri dari citra rgb. Ciri yang diekstrak adalah berupa ciri statistik dan ciri bentuk. Pada contoh ini digunakan citra fish.jpg di mana foreground adalah berupa ikan sedangkan background adalah berupa air.
Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Membaca dan menampilkan citra asli
clc;clear;close all;
Img = imread('fish.jpg');
figure, imshow(Img), title('original image');
sehingga diperoleh tampilan:
Segmentasi Citra dengan Metode Multi Thresholding dan K-Means Clustering
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan segmentasi citra dengan menggunakan dua buah metode yang berbeda. Metode yang pertama yaitu multi thresholding, sedangkan metode yang kedua adalah k-means clustering. Segmentasi dilakukan terhadap citra rose.jpg yang ditunjukkan pada gambar di bawah ini.
Pengolahan Citra Biner
Penghitungan terhadap atribut-atribut yang melekat pada suatu objek dalam citra digital secara sederhana dapat dilakukan dengan cara mengkonversi citra asli (RGB ataupun grayscale) menjadi citra biner terlebih dahulu. Setelah diperoleh citra biner, maka selanjutnya atribut-atribut (misalnya luas dan keliling) dapat dihitung. Namun terkadang citra biner tersebut perlu diolah lebih lanjut agar citra biner benar-benar tepat merepresentasikan objek yang dimaksud.
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan proses segmentasi dan analisis citra. Langkah-langkah nya yaitu:
1. Membaca dan menampilkan citra asli. Pada contoh ini citra yang digunakan adalah citra ‘airplane.jpg’ di mana objek yang dikehendaki adalah berupa pesawat, sedangkan background adalah berupa langit.
clc; clear; close all; warning off all;
Img = imread('airplane.jpg');
figure, imshow(Img);
sehingga diperoleh tampilan
Pengolahan Citra untuk Deteksi Warna Kulit (Skin Detection)
Deteksi warna kulit (skin color detection) merupakan salah satu proses segmentasi yang memisahkan region objek dalam citra berdasarkan pada perbedaan warna. Objek yang memiliki warna tertentu dipisahkan dengan objek yang memiliki warna lainnya. Hasil segmentasi dapat digunakan untuk proses selanjutnya seperti ekstraksi ciri atau klasifikasi citra. Pada contoh ini, warna kulit didefiniskan dalam ruang warna YCbCr dengan nilai Cb antara 77 s.d 127 dan nilai Cr antara 133 s.d 173.
Deteksi warna kulit merupakan salah satu tahapan awal dalam computer vision untuk mendeteksi hal-hal yang berkaitan dengan manusia (people detection). Deteksi warna kulit dapat dijadikan sebagai metode segmentasi untuk pengenalan wajah (face recognition) maupun pengenalan organ tubuh lainnya. Sistem tersebut dapat dikembangkan lebih lanjut untuk sistem biometrik.
Langkah-langkah proses segmentasi warna kulit adalah sebagai berikut:
1. Melakukan penyeimbangan warna RGB (Color Balanced 24-bit RGB Image)
2. Melakukan transformasi ruang warna RGB menjadi YCbCr
3. Melakukan segmentasi warna kulit berdasarkan nilai Cb antara 77 s.d 127 dan nilai Cr antara 133 s.d 173
4. Menampilkan hasil segmentasi
Hasil segmentasi ditunjukkan pada gambar berikut:
| No | Citra Asli | Hasil Deteksi Warna Kulit |
| 1 | ![]() |
![]() |
| 2 | ![]() |
![]() |
| 3 | ![]() |
![]() |
| 4 | ![]() |
![]() |
Pengolahan Citra Digital untuk Deteksi Tepi Obyek
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk mendeteksi objek dalam citra digital menggunakan metode deteksi tepi roberts.
Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Membaca citra asli
-read more->



























































