Blog Archives
Cara Mengukur Jarak antara Dua Objek dalam Citra
Dalam sistem koordinat citra dua dimensi, jarak antara dua objek dapat diukur menggunakan persamaan euclidean distance. Berikut ini merupakan contoh aplikasi pemrograman matlab untuk mengukur jarak antara dua objek dalam citra phantom berekstensi dicom. Langkah-langkahnya adalah sebagai berikut:
1. Membaca citra phantom yang berekstensi dicom

-read more->
True Color and Pseudo Color
Citra truecolor merupakan citra yang memiliki warna sejati yaitu warna yang berasal dari kombinasi warna dasar merah, hijau, dan biru. Citra truecolor 24-bit memiliki kombinasi warna sebanyak 2^24 atau 16.777.216 warna yang tersusun dari tiga buah kanal warna (merah, hijau, dan biru) di mana masing-masing kanal warna memiliki range nilai intensitas sebesar 2^8 atau 256 (8-bit).
Berikut ini merupakan contoh citra truecolor 24-bit beserta kanal-kanal warna penyusunnya:
1. Citra truecolor 24-bit (Truecolor Image 24-bit)

2. Kanal Merah 8-bit (Red Channel 8-bit)
-read more->
Cara Menghitung Luas , Keliling , dan Centroid suatu Citra
Proses pengenalan objek dalam citra umumnya membutuhkan suatu ciri yang dapat membedakan antara objek yang satu dengan objek lainnya. Ciri yang dapat diekstrak antara lain adalah ciri ukuran (luas dan keliling) dan posisi (koordinat centroid) dari suatu objek.
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk menghitung centroid, luas, dan keliling objek dalam suatu citra grayscale. Centroid merupakan koordinat titik tengah dari suatu objek. Luas merupakan banyaknya piksel yang menyusun suatu objek. Sedangkan keliling merupakan banyaknya piksel yang berada pada boundary objek. Hasil penghitungan geometris tersebut dapat digunakan sebagai ciri masukan dalam tahapan pengenalan pola morfologi/ bentuk.
Langkah-langkah pemrograman untuk menghitung luas, keliling, dan centroid suatu citra adalah sebagai berikut:
1. Membaca dan menampilkan citra grayscale

-read more->
Logika Fuzzy untuk Sistem Pengatur Kecepatan Mesin
Dalam paper yang berjudul Fuzzy Sets*, pada tahun 1965 Dr. Lotfi Aliasker Zadeh (Ilmuwan Amerika Serikat berkebangsaan Iran dari University of California, Berkeley, California) memperkenalkan teori fuzzy yang mampu memetakan nilai masukan menuju nilai keluaran. Tidak seperti pada logika Boolean yang menyatakan suatu nilai dengan tegas (0 atau 1, hitam atau putih, ya atau tidak, benar atau salah, hidup atau mati), teori fuzzy menggunakan logika yang menyatakan bahwa suatu nilai dapat memiliki range atau derajat level (0 s.d 1, hitam s.d putih). Logika fuzzy dapat diartikan sebagai logika yang samar, kabur, tidak jelas, atau tidak tegas. Logika fuzzy umumnya diterapkan pada masalah-masalah yang mengandung unsur ketidakpastian (uncertainty), ketidaktepatan (imprecise), noisy, dan sebagainya. Logika fuzzy menjembatani bahasa mesin yang presisi dengan bahasa manusia yang menekankan pada makna atau arti (significance). Logika fuzzy dikembangkan berdasarkan bahasa manusia (bahasa alami).
Berikut ini merupakan contoh aplikasi pemrograman logika fuzzy untuk sistem pengatur kecepatan mesin menggunakan sensor suhu dan sensor cahaya sebagai masukan.
Langkah-langkahnya adalah sebagai berikut:
1. Menyusun konsep sistem kontrol dengan logika fuzzy
Misalnya keadaan sensor suhu (input 1) dibagi menjadi lima kategori yaitu:
-read more->
Deteksi wajah (face detection) menggunakan algoritma Viola-Jones
Deteksi wajah merupakan tahapan awal dalam sistem pengenalan wajah. Sistem pengenalan wajah banyak diaplikasikan dalam bidang biometrik untuk mengenali identitas pemilik wajah.
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk mendeteksi wajah (face detection).
faceDetector = vision.CascadeObjectDetector;
I = imread('visionteam.jpg');
bboxes = step(faceDetector, I);
IFaces = insertObjectAnnotation(I, 'rectangle', bboxes, 'Face');
figure, imshow(IFaces), title('Detected faces');
Model warna RGB dan histogram citra
Model warna RGB terdiri dari tiga komponen warna yaitu komponen Red, Green, dan Blue. Perintah untuk memanggil citra RGB adalah sebagai berikut:
I = imread('football.jpg');
figure, imshow(I);
















































