Blog Archives
Kompresi Citra dengan Metode Discrete Cosine Transform (DCT)
Discrete Cosine Transform (DCT) adalah teknik transformasi matematika yang digunakan untuk mengurangi redundansi dalam citra digital dan digunakan dalam kompresi citra. Berikut adalah langkah-langkah umum untuk melakukan kompresi citra menggunakan DCT:
- Membaca citra: Citra asli dibaca dan dipecah menjadi blok-blok kecil.
- Transformasi DCT: Setiap blok citra diubah menjadi domain frekuensi menggunakan transformasi DCT. DCT menghasilkan koefisien frekuensi yang merepresentasikan informasi dalam citra.
- Kuantisasi: Koefisien frekuensi yang dihasilkan oleh DCT dikuantisasi untuk mengurangi jumlah bit yang digunakan untuk merepresentasikan citra. Kuantisasi menghilangkan informasi yang tidak signifikan dalam citra.
- Kompresi: Kuantisasi menghasilkan koefisien frekuensi yang lebih kecil. Koefisien frekuensi yang kecil ini dihapus atau diubah menjadi nol untuk mengurangi ukuran data.
- Rekonstruksi: Citra dikembalikan ke domain spasial dari domain frekuensi menggunakan transformasi invers DCT.
Kompresi Citra Digital Menggunakan Transformasi Wavelet
Transformasi wavelet adalah teknik matematika yang digunakan untuk menganalisis dan merepresentasikan data dalam domain frekuensi dan waktu secara bersamaan. Berikut adalah beberapa poin penting tentang transformasi wavelet:
- Wavelet: Wavelet adalah fungsi matematika yang digunakan dalam transformasi wavelet. Fungsi ini memiliki sifat lokal dan dapat merepresentasikan perubahan dalam waktu dan frekuensi. Beberapa jenis wavelet yang umum digunakan termasuk Haar, Daubechies, Symlets, dan Coiflets.
- Multi-resolusi: Transformasi wavelet memungkinkan analisis data dalam berbagai resolusi. Dengan menggunakan skala yang berbeda, transformasi wavelet dapat mengungkapkan detail halus dan kasar dalam data.
- Dekomposisi: Transformasi wavelet dapat memecah data menjadi komponen frekuensi yang berbeda. Proses ini melibatkan dekomposisi data menjadi aproksimasi (komponen rendah frekuensi) dan detail (komponen tinggi frekuensi) menggunakan filter wavelet.
- Rekonstruksi: Rekonstruksi adalah proses menggabungkan komponen frekuensi yang telah dipecah menjadi bentuk aslinya menggunakan filter wavelet yang berlawanan.
- Aplikasi: Transformasi wavelet memiliki berbagai aplikasi dalam pengolahan sinyal dan citra, termasuk kompresi citra, pengenalan pola, denoising, deteksi tepi, dan analisis data time series.















































