Blog Archives
Segmentasi Citra dengan Metode Multi Thresholding dan K-Means Clustering
Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan segmentasi citra dengan menggunakan dua buah metode yang berbeda. Metode yang pertama yaitu multi thresholding, sedangkan metode yang kedua adalah k-means clustering. Segmentasi dilakukan terhadap citra rose.jpg yang ditunjukkan pada gambar di bawah ini.
Cara melakukan cropping citra secara otomatis
Dalam bidang pengolahan citra digital, segmentasi merupakan proses yang bertujuan untuk memisahkan suatu region dengan region lainnya. Pemisahan didasarkan pada perbedaan karakteristik antar region seperti perbedaan tingkat kecerahan, warna, tekstur, dll. Proses tersebut menghasilkan keluaran berupa citra biner di mana region yang telah tersegmentasi (pada umumnya disebut juga dengan foreground) akan berwarna putih atau bernilai 1. Sedangkan region lainnya (disebut juga dengan background) akan berwarna hitam atau bernilai 0.
Ada berbagai jenis metode segmentasi citra di antaranya adalah thresholding, active contour, deteksi tepi, transformasi hough, watershed, region growing, dll. Pada contoh ini ditunjukkan sebuah proses segmentasi citra dengan metode thresholding. Citra keluaran dari proses tersebut adalah citra biner yang kemudian digunakan untuk melakukan cropping dan juga perhitungan luas, keliling, dan centroid dari masing-masing objek.
Langkah-langkah pemrograman matlab untuk melakukan segmentasi citra adalah sebagai berikut:
1. Membaca citra asli
clc; clear; close all; warning off all;
originalImage = imread('doodles.jpg');
figure, imshow(originalImage);
sehingga diperoleh tampilan citra asli seperti pada gambar di bawah ini:















































