Blog Archives
Pengenalan Wajah Menggunakan Algoritma Principal Component Analysis (PCA)
Principal Component Analysis (PCA) adalah teknik analisis statistik yang digunakan untuk mengurangi dimensi data. Berikut adalah beberapa konsep penting terkait PCA:
- Dimensi data: Dimensi data adalah jumlah variabel atau fitur dalam dataset. PCA digunakan untuk mengurangi dimensi data dengan memproyeksikan data ke dalam ruang dimensi yang lebih rendah.
- Komponen utama: Komponen utama adalah kombinasi linear dari variabel dalam dataset yang menjelaskan sebagian besar variasi dalam data. PCA mencari komponen utama dengan memaksimalkan varians data yang dijelaskan oleh setiap komponen.
- Varians: Varians adalah ukuran seberapa tersebar data dalam satu dimensi. PCA memilih komponen utama yang memiliki varians tertinggi untuk mempertahankan sebanyak mungkin informasi dalam data.
- Reduksi dimensi: PCA digunakan untuk reduksi dimensi data dengan memproyeksikan data ke dalam ruang dimensi yang lebih rendah. Proyeksi dilakukan dengan mencari kombinasi linear dari fitur yang memaksimalkan pemisahan antara kelas.
Identifikasi Tingkat Kematangan Buah Jeruk Menggunakan Metode K-Nearest Neighbor (K-NN)
Buah jeruk adalah salah satu komoditas buah yang sangat populer dan memiliki nilai gizi yang tinggi. Identifikasi tingkat kematangan buah jeruk dengan akurasi yang tinggi menjadi kunci dalam memastikan kualitas produk dan pengelolaan persediaan yang efisien. Dalam upaya ini, pengolahan citra dengan metode K-Nearest Neighbor (K-NN) telah terbukti menjadi alat yang efektif dalam mengatasi tantangan tersebut dengan ketepatan dan reliabilitas.
Pengolahan citra telah membuka peluang besar dalam berbagai aspek kehidupan, termasuk dalam dunia pertanian dan agroteknologi. Dalam konteks identifikasi tingkat kematangan buah jeruk, penggunaan teknologi pengolahan citra memungkinkan analisis objektif dan mendalam terhadap atribut-atribut visual yang berkaitan dengan kematangan buah.
-read more->














































