Blog Archives

Penerapan Algoritma Support Vector Machine dalam Klasifikasi Citra menggunakan MATLAB


Klasifikasi citra adalah salah satu aplikasi penting dalam bidang pengolahan citra yang bertujuan untuk mengenali dan membedakan objek atau pola tertentu dalam citra. Algoritma Support Vector Machine (SVM) adalah metode pembelajaran mesin yang efektif untuk melakukan klasifikasi dengan membangun model yang dapat memisahkan data dengan jelas ke dalam beberapa kategori. Artikel ini akan membahas penerapan algoritma Support Vector Machine dalam klasifikasi citra menggunakan perangkat lunak MATLAB.

-read more->

Penerapan Algoritma K-Nearest Neighbor (KNN) dalam Pengolahan Citra menggunakan MATLAB


Pengolahan citra merupakan salah satu bidang yang penting dalam dunia komputer dan teknologi informasi. Pada era di mana data citra semakin melimpah, metode pengolahan citra yang efisien dan akurat menjadi kunci untuk mendapatkan informasi yang berarti. Salah satu metode yang sering digunakan dalam pengolahan citra adalah algoritma K-Nearest Neighbor (KNN). Artikel ini akan membahas konsep dasar KNN dan bagaimana kita dapat menerapkannya dalam pengolahan citra menggunakan perangkat lunak MATLAB.

-read more->

Penerapan Convolutional Neural Network untuk Klasifikasi Citra


Convolutional Neural Network (CNN) merupakan salah satu teknik utama dalam bidang pengolahan citra dan kecerdasan buatan. CNN telah membuktikan kemampuannya yang luar biasa dalam memahami dan mengklasifikasikan citra dengan akurasi tinggi. Artikel ini akan membahas tentang penerapan Convolutional Neural Network dalam klasifikasi citra, mengapa teknik ini efektif, serta beberapa contoh aplikasi praktis yang telah mengubah cara kita memproses dan memahami citra.

-read more->

Deteksi Kematangan Buah Sawit Menggunakan Self-Organizing Maps (SOM)


Self Organizing Maps (SOM) merupakan suatu metode Jaringan Saraf Tiruan yang diperkenalkan pertama kali oleh Teuvo Kohonen tahun 1981, sehingga sering disebut dengan Jaringan Kohonen. Dinamakan “Self Organizing” karena tidak memerlukan pengawasan/ tak terawasi (unsupervised learning) dan disebut “Maps” karena berusaha memetakan bobotnya agar sesuai dengan input data yang diberikan. Neuron-neuron pada jaringan ini menyusun dirinya sendiri berdasarkan nilai input tertentu dalam suatu kelompok, biasa disebut cluster. Selama proses penyusunan diri, cluster dengan vektor bobot paling cocok dengan pola bobot (jarak paling dekat) akan terpilih sebagai pemenang. Neuron pemenang beserta neuron-neuron tetangga akan memperbaiki bobotnya masing-masing.

Arsitektur Self Organizing Map (SOM)

Berikut ini merupakan contoh pemrograman MATLAB untuk mendeteksi kematangan buah sawit menggunakan Self Organizing Map (SOM). Langkah-langkahnya adalah sebagai berikut:

1. Mempersiapkan data latih

-read more->

Klasifikasi Jenis Sayuran Menggunakan Algoritma PCA dan KNN


Apakah yang dimaksud dengan Principal Component Analysis (PCA)??

Principal Component Analysis (PCA) merupakan suatu algoritma yang mampu mengkonversi sekelompok data yang pada awalnya saling berkorelasi menjadi data yang tidak saling berkorelasi (Principal Component). Jumlah Principal Component yang dihasilkan adalah sama dengan jumlah data aslinya, tetapi dapat direduksi dengan jumlah yang lebih kecil dan tetap mampu merepresentasikan data asli dengan baik.

Berikut ini merupakan contoh pemrograman matlab untuk klasifikasi jenis sayuran menggunakan algoritma PCA dan KNN. Jenis sayuran yang akan diklasifikasi adalah sayur kol, sawi, dan wortel. Ketiga jenis sayur tersebut dibedakan berdasarkan ciri warna dan ukurannya. Contoh citra sayuran pada masing-masing kelas ditunjukkan pada gambar di bawah ini.

-read more->

Jaringan Syaraf Tiruan untuk Klasifikasi Citra Daun


Salah satu penerapan dari algoritma jaringan syaraf tiruan adalah untuk proses klasifikasi citra. Berikut ini merupakan contoh aplikasi pemrograman matlab untuk melakukan klasifikasi terhadap citra daun. Citra daun dikelompokkan ke dalam 4 kelas spesies yaitu Bougainvillea sp, Geranium sp, Magnolia soulangeana, dan Pinus sp. Pada contoh ini digunakan 40 citra daun yang terdiri dari 10 citra pada masing-masing kelas. Contoh dari citra daun yang digunakan ditunjukkan pada gambar di bawah ini:

Langkah-langkah pemrogramannya adalah sebagai berikut:
1. Mempersiapkan citra latih dan citra uji. Pada contoh ini 40 citra daun dibagi menjadi dua bagian yaitu 24 citra untuk citra latih dan 16 citra untuk citra uji.

-read more->