Blog Archives

Deteksi Kematangan Buah Sawit Menggunakan Algoritma Self-Organizing Map (SOM)


Pengolahan citra digital telah mengalami perkembangan yang pesat dalam beberapa dekade terakhir, memungkinkan aplikasi yang luas dalam berbagai bidang seperti kedokteran, pertanian, industri, dan lain-lain. Salah satu langkah penting dalam pengolahan citra adalah klasifikasi, yaitu memisahkan objek atau pola yang berbeda dalam citra menjadi kategori atau kelas yang sesuai. Dalam hal ini, Algoritma Self-Organizing Map (SOM) telah muncul sebagai salah satu pendekatan yang kuat dan efektif dalam melakukan klasifikasi citra digital.

-read more->

Jaringan Syaraf Tiruan untuk Identifikasi Jenis Bunga


Jaringan syaraf tiruan (neural network) merupakan algoritma yang mampu melakukan identifikasi suatu kelas berdasarkan ciri masukan yang diberikan. Algoritma ini akan melatihkan ciri masukan yang diberikan pada masing-masing kelas sehingga diperoleh suatu arsitektur jaringan dan bobot-bobot awal yang mampu memetakan ciri masukan ke dalam kelas keluaran.

Terdapat banyak jenis jaringan syaraf tiruan, di antaranya adalah backpropagation, perceptron, probablistik neural network, radial basis network, dll.

Berikut ini merupakan contoh aplikasi pemrograman matlab (menggunakan matlab r2015b) untuk mengidentifikasi jenis bunga menggunakan algoritma jaringan syaraf tiruan radial basis function (rbfnn). Pada proses pelatihan jaringan digunakan 100 citra latih yang terdiri dari 50 citra bunga dengan jenis kansas state flower dan 50 citra bunga berjenis marguerite daisy. Sedangkan pada proses pengujian digunakan 60 citra uji yang terdiri dari 30 citra bunga kansas state flower dan 50 citra bunga marguerite daisy.

Contoh citra bunga yang digunakan ditunjukkan pada gambar berikut.

-read more->