Blog Archives
Klasifikasi Jenis Buah Mangga Menggunakan Convolutional Neural Network
Convolutional Neural Network (CNN) adalah jenis arsitektur jaringan syaraf tiruan yang umumnya digunakan dalam bidang Computer Vision. CNN digunakan untuk memproses data dengan topologi grid, seperti gambar atau video. Dalam algoritmanya, CNN menggunakan operasi matematika yang disebut konvolusi untuk menggantikan perkalian matriks umum pada setidaknya satu lapisannya. Lapisan (layer) dalam CNN yang umumnya digunakan antara lain Convolutional Layer, Batch Normalization Layer, ReLU (Rectified Linear Activation) Layer, Max Pooling Layer, Fully Connected Layer, dan Softmax Layer. CNN banyak diterapkan pada berbagai bidang pengolahan citra salah satunya untuk klasifikasi jenis buah mangga.
-read more->Klasifikasi Jenis Jambu Biji Menggunakan Convolutional Neural Network AlexNet
Jambu biji adalah buah tropis yang populer dan memiliki berbagai variasi jenis. Klasifikasi jenis jambu biji menjadi penting dalam mengidentifikasi varietas dan mengelola persediaan buah. Dalam upaya ini, pengolahan citra dengan menggunakan Convolutional Neural Network (CNN) khususnya AlexNet telah membuktikan efektivitasnya dalam mengklasifikasikan jenis jambu biji, termasuk jambu biji kristal dan jambu biji lokal.
Teknologi pengolahan citra telah menghadirkan terobosan signifikan dalam berbagai industri, termasuk pertanian dan produksi pangan. Identifikasi jenis jambu biji dengan akurasi tinggi adalah langkah penting dalam memastikan kualitas dan diversitas produk buah.
-read more->Memahami Algoritma Jaringan Syaraf Tiruan Learning Vector Quantization (LVQ)
Jaringan Syaraf Tiruan (JST) telah menjadi salah satu pilar utama dalam dunia kecerdasan buatan, memungkinkan kita untuk memodelkan dan memahami pola-pola dalam data. Learning Vector Quantization (LVQ) adalah salah satu algoritma JST yang memiliki aplikasi khusus dalam tugas-tugas klasifikasi dan pengenalan pola. Dalam artikel ini, kita akan mempelajari konsep dasar LVQ, cara kerjanya, dan penerapannya dalam pengenalan pola.
-read more->Mengenal Arsitektur AlexNet dalam Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN) telah mengubah lanskap pengolahan citra dan tugas-tugas pengenalan pola dengan kemampuan yang luar biasa dalam memahami fitur-fitur visual kompleks. Salah satu tonggak penting dalam perkembangan CNN adalah arsitektur AlexNet. Dalam artikel ini, kita akan membahas tentang arsitektur AlexNet, bagaimana ia bekerja, dan dampaknya terhadap perkembangan dunia deep learning.
AlexNet, yang dinamai berdasarkan peneliti Alex Krizhevsky, bersama dengan Geoffrey Hinton dan Ilya Sutskever, memenangkan kompetisi ILSVRC (ImageNet Large Scale Visual Recognition Challenge) tahun 2012 dengan perbedaan yang mencolok. Ini merupakan momen penting dalam sejarah deep learning karena menunjukkan bahwa arsitektur CNN yang dalam bisa digunakan untuk tugas-tugas pengenalan citra kompleks.
-read more->Memahami Algoritma You Only Look Once (YOLO) dan Penerapannya Menggunakan MATLAB
Dalam dunia komputer vision, deteksi objek merupakan salah satu tantangan utama. Algoritma You Only Look Once (YOLO) telah memperkenalkan pendekatan yang revolusioner dalam melakukan deteksi objek secara cepat dan akurat. Artikel ini akan membahas tentang algoritma YOLO, prinsip kerjanya, dan bagaimana kita dapat menerapkannya menggunakan MATLAB.
Pengenalan Algoritma YOLO
Algoritma You Only Look Once (YOLO) adalah pendekatan deteksi objek real-time yang memungkinkan kita untuk mendeteksi objek dalam satu kali pengamatan sekaligus, tanpa perlu proses komputasi yang berulang-ulang. YOLO memahami tampilan gambar sebagai masalah regresi dan menerapkan deep learning untuk menghasilkan bounding box (kotak batas) yang mengelilingi objek-objek yang ada dalam gambar, berserta dengan label dan tingkat keyakinan (confidence score).
-read more->Jenis-jenis Arsitektur Convolutional Neural Network (CNN) untuk Image Recognition dan Computer Vision
Convolutional Neural Network (CNN) telah menjadi pilar utama dalam revolusi pengenalan gambar (image recognition) dan penglihatan komputer (computer vision). Arsitektur CNN telah menghasilkan perkembangan luar biasa dalam berbagai tugas seperti klasifikasi gambar, deteksi objek, segmentasi gambar, dan banyak lagi. Artikel ini akan membahas beberapa jenis arsitektur CNN yang telah mendominasi dalam beberapa tahun terakhir.

Penerapan Convolutional Neural Network untuk Klasifikasi Citra
Convolutional Neural Network (CNN) merupakan salah satu teknik utama dalam bidang pengolahan citra dan kecerdasan buatan. CNN telah membuktikan kemampuannya yang luar biasa dalam memahami dan mengklasifikasikan citra dengan akurasi tinggi. Artikel ini akan membahas tentang penerapan Convolutional Neural Network dalam klasifikasi citra, mengapa teknik ini efektif, serta beberapa contoh aplikasi praktis yang telah mengubah cara kita memproses dan memahami citra.

Segmentasi Semantik Menggunakan Convolutional Neural Network (CNN)
Segmentasi semantik adalah salah satu cabang penting dalam dunia komputer vision, di mana tujuannya adalah untuk memahami struktur dan makna dari gambar dengan cara membaginya menjadi beberapa bagian atau wilayah yang saling terkait. Salah satu teknik yang paling efektif dalam mencapai tujuan ini adalah dengan menggunakan Convolutional Neural Network (CNN), yang merupakan salah satu jenis jaringan saraf tiruan yang telah merevolusi industri komputer vision. Artikel ini akan membahas secara rinci konsep segmentasi semantik menggunakan CNN dan mengapa teknik ini sangat efektif dalam mengatasi tugas ini.

Memahami Deep Learning: Revolusi Teknologi yang Membentuk Masa Depan
Deep Learning merupakan salah satu cabang utama dari pembelajaran mesin (machine learning) yang telah merevolusi dunia teknologi dan mendefinisikan masa depan berbagai bidang, mulai dari kecerdasan buatan (AI) hingga pengenalan wajah dan bahasa alami. Teknik ini menggunakan jaringan saraf tiruan (artificial neural networks) yang mendalam untuk mengenali pola yang kompleks dalam data dan mempelajari representasi yang lebih abstrak dari informasi tersebut. Artikel ini akan membahas konsep dasar Deep Learning, sejarahnya, dan beberapa aplikasi yang luar biasa yang telah mengubah cara kita melihat teknologi.



















































