Blog Archives
Deteksi Wajah Menggunakan Algoritma Viola-Jones
Deteksi wajah adalah salah satu aplikasi penting dalam pengolahan citra dan visi komputer. Algoritma Viola-Jones adalah salah satu metode yang paling dikenal dan efisien dalam mendeteksi wajah dalam citra digital. Dalam artikel ini, akan dijelaskan konsep dasar algoritma Viola-Jones dan bagaimana algoritma ini digunakan dalam deteksi wajah.

Deteksi Dan Ekstraksi Ciri Wajah Menggunakan Algoritma Viola-Jones
Deteksi wajah dengan metode Viola-Jones adalah sebuah algoritma yang digunakan untuk mendeteksi wajah pada gambar atau video. Berikut adalah beberapa informasi mengenai deteksi wajah dengan metode Viola-Jones:
- Metode Viola-Jones menggunakan fitur Haar sebagai deskriptor untuk mendeteksi wajah. Fitur Haar adalah pola piksel yang digunakan untuk mengidentifikasi bagian wajah seperti mata, hidung, dan mulut.
- Algoritma Viola-Jones terdiri dari tiga komponen penting, yaitu integral image, Adaboost, dan cascade classifier. Integral image digunakan untuk menghitung jumlah piksel dalam suatu area tertentu dengan cepat. Adaboost digunakan untuk memilih fitur-fitur Haar yang paling relevan dalam mendeteksi wajah. Cascade classifier adalah serangkaian classifier yang digunakan untuk memfilter area yang tidak relevan sehingga meningkatkan kecepatan deteksi.
- Metode Viola-Jones memiliki tingkat akurasi yang tinggi dan komputasi yang cepat. Hal ini membuatnya menjadi salah satu metode yang populer dalam deteksi wajah.
- Metode Viola-Jones dapat dimodifikasi dengan memodifikasi nilai-nilai parameter yang ada untuk meningkatkan tingkat akurasi sistem.
- Implementasi metode Viola-Jones dapat dilakukan menggunakan berbagai platform, termasuk Android dan FPGA (Field Programmable Gate Arrays).
Pengenalan Wajah Menggunakan Algoritma PCA
Salah satu algoritma yang dapat diimplementasikan dalam sistem pengenalan wajah (face recognition) adalah Principal Component Analysis (PCA). Berikut ini merupakan contoh aplikasi pemrograman MATLAB mengenai pengenalan wajah menggunakan algoritma PCA.
Pada pemrograman pengenalan wajah ini digunakan citra latih yang terdiri dari 10 individu (5 pria dan 5 wanita), di mana pada masing-masing individu terdiri dari 15 citra wajah sehingga jumlah total data latih adalah sebanyak 150 citra wajah. Sedangkan pada citra uji, masing-masing individu terdiri dari 5 citra wajah sehingga jumlah total data uji adalah sebanyak 50 citra wajah. Berikut ini merupakan tampilan beberapa citra latih yang digunakan:
Ekstraksi Ciri Wajah Menggunakan Algoritma Viola-Jones
Tahapan Face Recognition (Pengenalan Wajah) antara lain adalah face detection (deteksi wajah), feature extraction (ekstraksi ciri), dan recognition (pengenalan). Berikut ini merupakan contoh aplikasi deteksi wajah dan ekstraksi ciri wajah menggunakan bahasa pemrograman MATLAB. Objek yang dideteksi antara lain adalah wajah, mata (kanan dan kiri), hidung, dan mulut. Sedangkan ciri yang diekstrak adalah jarak antara masing-masing objek yang dideteksi.
1. Tampilan Halaman GUI awal
















































